scholarly journals Tumble Suppression Is a Conserved Feature of Swarming Motility

mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Jonathan D. Partridge ◽  
Nguyen T. Q. Nhu ◽  
Yann S. Dufour ◽  
Rasika M. Harshey

ABSTRACT Many bacteria use flagellum-driven motility to swarm or move collectively over a surface terrain. Bacterial adaptations for swarming can include cell elongation, hyperflagellation, recruitment of special stator proteins, and surfactant secretion, among others. We recently demonstrated another swarming adaptation in Escherichia coli, wherein the chemotaxis pathway is remodeled to decrease tumble bias (increase run durations), with running speeds increased as well. We show here that the modification of motility parameters during swarming is not unique to E. coli but is shared by a diverse group of bacteria we examined—Proteus mirabilis, Serratia marcescens, Salmonella enterica, Bacillus subtilis, and Pseudomonas aeruginosa—suggesting that increasing run durations and speeds are a cornerstone of swarming. IMPORTANCE Bacteria within a swarm move characteristically in packs, displaying an intricate swirling motion in which hundreds of dynamic rafts continuously form and dissociate as the swarm colonizes an increasing expanse of territory. The demonstrated property of E. coli to reduce its tumble bias and hence increase its run duration during swarming is expected to maintain and promote side-by-side alignment and cohesion within the bacterial packs. In this study, we observed a similar low tumble bias in five different bacterial species, both Gram positive and Gram negative, each inhabiting a unique habitat and posing unique problems to our health. The unanimous display of an altered run-tumble bias in swarms of all species examined in this investigation suggests that this behavioral adaptation is crucial for swarming.

2020 ◽  
Author(s):  
Jonathan D. Partridge ◽  
Nhu Q. Nguyen ◽  
Yann S. Dufour ◽  
Rasika M. Harshey

AbstractMany bacteria use flagella-driven motility to swarm or move collectively over a surface terrain. Bacterial adaptations for swarming can include cell elongation, hyper-flagellation, recruitment of special stator proteins and surfactant secretion, among others. We recently demonstrated another swarming adaptation in Escherichia coli, wherein the chemotaxis pathway is remodeled to increase run durations (decrease tumble bias), with running speeds increased as well. We show here that the modification of motility parameters during swarming is not unique to E. coli, but shared by a diverse group of bacteria we examined – Proteus mirabilis, Serratia marcescens, Salmonella enterica, Bacillus subtilis, and Pseudomonas aeruginosa – suggesting that altering the chemosensory physiology is a cornerstone of swarming.ImportanceBacteria within a swarm move characteristically in packs, displaying an intricate swirling motion where hundreds of dynamic packs continuously form and dissociate as the swarm colonizes increasing expanse of territory. The demonstrated property of E. coli to reduce its tumble bias and hence increase its run duration during swarming is expected to maintain/promote side-by-side alignment and cohesion within the bacterial packs. Here we observe a similar low tumble bias in five different bacterial species, both Gram positive and Gram negative, each inhabiting a unique habitat and posing unique problems to our health. The unanimous display of an altered run-tumble bias in swarms of all species examined here suggests that this behavioral adaptation is crucial for swarming.


2016 ◽  
Vol 60 (10) ◽  
pp. 5995-6002 ◽  
Author(s):  
Kristin R. Baker ◽  
Bimal Jana ◽  
Henrik Franzyk ◽  
Luca Guardabassi

ABSTRACTThe envelope of Gram-negative bacteria constitutes an impenetrable barrier to numerous classes of antimicrobials. This intrinsic resistance, coupled with acquired multidrug resistance, has drastically limited the treatment options against Gram-negative pathogens. The aim of the present study was to develop and validate an assay for identifying compounds that increase envelope permeability, thereby conferring antimicrobial susceptibility by weakening of the cell envelope barrier in Gram-negative bacteria. A high-throughput whole-cell screening platform was developed to measureEscherichia colienvelope permeability to a β-galactosidase chromogenic substrate. The signal produced by cytoplasmic β-galactosidase-dependent cleavage of the chromogenic substrate was used to determine the degree of envelope permeabilization. The assay was optimized by using known envelope-permeabilizing compounds andE. coligene deletion mutants with impaired envelope integrity. As a proof of concept, a compound library comprising 36 peptides and 45 peptidomimetics was screened, leading to identification of two peptides that substantially increased envelope permeability. Compound 79 reduced significantly (from 8- to 125-fold) the MICs of erythromycin, fusidic acid, novobiocin and rifampin and displayed synergy (fractional inhibitory concentration index, <0.2) with these antibiotics by checkerboard assays in two genetically distinctE. colistrains, including the high-risk multidrug-resistant, CTX-M-15-producing sequence type 131 clone. Notably, in the presence of 0.25 μM of this peptide, both strains were susceptible to rifampin according to the resistance breakpoints (R> 0.5 μg/ml) for Gram-positive bacterial pathogens. The high-throughput screening platform developed in this study can be applied to accelerate the discovery of antimicrobial helper drug candidates and targets that enhance the delivery of existing antibiotics by impairing envelope integrity in Gram-negative bacteria.


mBio ◽  
2018 ◽  
Vol 9 (4) ◽  
Author(s):  
Yingbo Shen ◽  
Zuowei Wu ◽  
Yang Wang ◽  
Rong Zhang ◽  
Hong-Wei Zhou ◽  
...  

ABSTRACTThe recent emergence of a transferable colistin resistance mechanism, MCR-1, has gained global attention because of its threat to clinical treatment of infections caused by multidrug-resistant Gram-negative bacteria. However, the possible transmission route ofmcr-1amongEnterobacteriaceaespecies in clinical settings is largely unknown. Here, we present a comprehensive genomic analysis ofEscherichia coliisolates collected in a hospital in Hangzhou, China. We found thatmcr-1-carrying isolates from clinical infections and feces of inpatients and healthy volunteers were genetically diverse and were not closely related phylogenetically, suggesting that clonal expansion is not involved in the spread ofmcr-1. Themcr-1gene was found on either chromosomes or plasmids, but in most of theE. coliisolates,mcr-1was carried on plasmids. The genetic context of the plasmids showed considerable diversity as evidenced by the different functional insertion sequence (IS) elements, toxin-antitoxin (TA) systems, heavy metal resistance determinants, and Rep proteins of broad-host-range plasmids. Additionally, the genomic analysis revealed nosocomial transmission ofmcr-1and the coexistence ofmcr-1with other genes encoding β-lactamases and fluoroquinolone resistance in theE. coliisolates. These findings indicate thatmcr-1is heterogeneously disseminated in both commensal and pathogenic strains ofE. coli, suggest the high flexibility of this gene in its association with diverse genetic backgrounds of the hosts, and provide new insights into the genome epidemiology ofmcr-1among hospital-associatedE. colistrains.IMPORTANCEColistin represents one of the very few available drugs for treating infections caused by extensively multidrug-resistant Gram-negative bacteria. The recently emergentmcr-1colistin resistance gene threatens the clinical utility of colistin and has gained global attention. Howmcr-1spreads in hospital settings remains unknown and was investigated by whole-genome sequencing ofmcr-1-carryingEscherichia coliin this study. The findings revealed extraordinary flexibility ofmcr-1in its spread among genetically diverseE. colihosts and plasmids, nosocomial transmission ofmcr-1-carryingE. coli, and the continuous emergence of novel Inc types of plasmids carryingmcr-1and newmcr-1variants. Additionally,mcr-1was found to be frequently associated with other genes encoding β-lactams and fluoroquinolone resistance. These findings provide important information on the transmission and epidemiology ofmcr-1and are of significant public health importance as the information is expected to facilitate the control of this significant antibiotic resistance threat.


2020 ◽  
Vol 64 (10) ◽  
Author(s):  
Po-Yu Liu ◽  
Yu-Lin Lee ◽  
Min-Chi Lu ◽  
Pei-Lan Shao ◽  
Po-Liang Lu ◽  
...  

ABSTRACT A multicenter collection of bacteremic isolates of Escherichia coli (n = 423), Klebsiella pneumoniae (n = 372), Pseudomonas aeruginosa (n = 300), and Acinetobacter baumannii complex (n = 199) was analyzed for susceptibility. Xpert Carba-R assay and sequencing for mcr genes were performed for carbapenem- or colistin-resistant isolates. Nineteen (67.8%) carbapenem-resistant K. pneumoniae (n = 28) and one (20%) carbapenem-resistant E. coli (n = 5) isolate harbored blaKPC (n = 17), blaOXA-48 (n = 2), and blaVIM (n = 1) genes.


2013 ◽  
Vol 58 (2) ◽  
pp. 722-733 ◽  
Author(s):  
Timothy J. Opperman ◽  
Steven M. Kwasny ◽  
Hong-Suk Kim ◽  
Son T. Nguyen ◽  
Chad Houseweart ◽  
...  

ABSTRACTMembers of the resistance-nodulation-division (RND) family of efflux pumps, such as AcrAB-TolC ofEscherichia coli, play major roles in multidrug resistance (MDR) in Gram-negative bacteria. A strategy for combating MDR is to develop efflux pump inhibitors (EPIs) for use in combination with an antibacterial agent. Here, we describe MBX2319, a novel pyranopyridine EPI with potent activity against RND efflux pumps of theEnterobacteriaceae. MBX2319 decreased the MICs of ciprofloxacin (CIP), levofloxacin, and piperacillin versusE. coliAB1157 by 2-, 4-, and 8-fold, respectively, but did not exhibit antibacterial activity alone and was not active against AcrAB-TolC-deficient strains. MBX2319 (3.13 μM) in combination with 0.016 μg/ml CIP (minimally bactericidal) decreased the viability (CFU/ml) ofE. coliAB1157 by 10,000-fold after 4 h of exposure, in comparison with 0.016 μg/ml CIP alone. In contrast, phenyl-arginine-β-naphthylamide (PAβN), a known EPI, did not increase the bactericidal activity of 0.016 μg/ml CIP at concentrations as high as 100 μM. MBX2319 increased intracellular accumulation of the fluorescent dye Hoechst 33342 in wild-type but not AcrAB-TolC-deficient strains and did not perturb the transmembrane proton gradient. MBX2319 was broadly active againstEnterobacteriaceaespecies andPseudomonas aeruginosa. MBX2319 is a potent EPI with possible utility as an adjunctive therapeutic agent for the treatment of infections caused by Gram-negative pathogens.


2016 ◽  
Vol 55 (2) ◽  
pp. 616-623 ◽  
Author(s):  
Marie A. Chattaway ◽  
Ulf Schaefer ◽  
Rediat Tewolde ◽  
Timothy J. Dallman ◽  
Claire Jenkins

ABSTRACTEscherichia coliandShigellaspecies are closely related and genetically constitute the same species. Differentiating between these two pathogens and accurately identifying the four species ofShigellaare therefore challenging. The organism-specific bioinformatics whole-genome sequencing (WGS) typing pipelines at Public Health England are dependent on the initial identification of the bacterial species by use of a kmer-based approach. Of the 1,982Escherichia coliandShigellasp. isolates analyzed in this study, 1,957 (98.4%) had concordant results by both traditional biochemistry and serology (TB&S) and the kmer identification (ID) derived from the WGS data. Of the 25 mismatches identified, 10 were enteroinvasiveE. coliisolates that were misidentified asShigella flexneriorS. boydiiby the kmer ID, and 8 wereS. flexneriisolates misidentified by TB&S asS. boydiidue to nonfunctionalS. flexneriO antigen biosynthesis genes. Analysis of the population structure based on multilocus sequence typing (MLST) data derived from the WGS data showed that the remaining discrepant results belonged to clonal complex 288 (CC288), comprising bothS. boydiiandS. dysenteriaestrains. Mismatches between the TB&S and kmer ID results were explained by the close phylogenetic relationship between the two species and were resolved with reference to the MLST data.Shigellacan be differentiated fromE. coliand accurately identified to the species level by use of kmer comparisons and MLST. Analysis of the WGS data provided explanations for the discordant results between TB&S and WGS data, revealed the true phylogenetic relationships between different species ofShigella, and identified emerging pathoadapted lineages.


2018 ◽  
Vol 200 (18) ◽  
Author(s):  
Krithika Rajagopalan ◽  
Elizabeth Nagle ◽  
Jonathan Dworkin

Regulatory protein phosphorylation is a conserved mechanism of signaling in all biological systems. Recent phosphoproteomic analyses of phylogenetically diverse bacteria, including the model Gram-negative bacteriumEscherichia coli, demonstrate that many proteins are phosphorylated on serine or threonine residues. In contrast to phosphorylation on histidine or aspartate residues, phosphorylation of serine and threonine residues is stable and requires the action of a partner Ser/Thr phosphatase to remove the modification. Although a number of Ser/Thr kinases have been reported inE. coli, no partner Ser/Thr phosphatases have been identified. Here, we biochemically characterize a novel Ser/Thr phosphatase that acts to dephosphorylate a Ser/Thr kinase that is encoded in the same operon.


2019 ◽  
Vol 8 (38) ◽  
Author(s):  
Douglas Pechacek ◽  
Myung Hwangbo ◽  
Russell Moreland ◽  
Mei Liu ◽  
Jolene Ramsey

Escherichia coli 4s is a Gram-negative bacterium found in the equine intestinal ecosystem alongside diverse other coliform bacteria and bacteriophages. This announcement describes the complete genome of the T7-like E. coli 4s podophage Penshu1. From its 39,263-bp genome, 54 protein-encoding genes and a 179-bp terminal repeat were predicted.


2019 ◽  
Vol 8 (40) ◽  
Author(s):  
James E. Corban ◽  
Jacob Gramer ◽  
Russell Moreland ◽  
Mei Liu ◽  
Jolene Ramsey

Escherichia coli is a Gram-negative bacterium often found in animal intestinal tracts. Here, we present the genome of the Guernseyvirinae-like E. coli 4s siphophage Snoke. The 44.4-kb genome contains 81 protein-coding genes, for which 33 functions were predicted. The capsid morphogenesis gene in Snoke contains a large intein.


2021 ◽  
Vol 65 (5) ◽  
Author(s):  
Dmitrii I. Shiriaev ◽  
Alina A. Sofronova ◽  
Ekaterina A. Berdnikovich ◽  
Dmitrii A. Lukianov ◽  
Ekaterina S. Komarova ◽  
...  

ABSTRACT Bacterial type II topoisomerases, DNA gyrase and topoisomerase IV, are targets of many antibiotics, including fluoroquinolones (FQs). Unfortunately, a number of bacterial species easily acquire resistance to FQs by mutations in either DNA gyrase or topoisomerase IV genes. The emergence of resistant pathogenic strains is a global problem in health care; therefore, identifying alternative pathways to thwart their persistence is the current frontier in drug discovery. Nybomycins are an attractive class of compounds, reported to be “reverse antibiotics” that selectively inhibit growth of some Gram-positive FQ-resistant bacteria by targeting the mutant form of DNA gyrase while being inactive against wild-type strains with FQ-sensitive gyrases. The strong “reverse” effect was demonstrated only for a few Gram-positive organisms resistant to FQs due to the S83L/I mutation in the GyrA subunit of DNA gyrase. However, the activity of nybomycins has not been extensively explored among Gram-negative species. Here, we observed that in a ΔtolC strain of the Gram-negative Escherichia coli with enhanced permeability, wild-type gyrase and a GyrA S83L mutant, resistant to fluoroquinolones, are similarly sensitive to nybomycin.


Sign in / Sign up

Export Citation Format

Share Document