scholarly journals Late Endosomal/Lysosomal Cholesterol Accumulation Is a Host Cell-Protective Mechanism Inhibiting Endosomal Escape of Influenza A Virus

mBio ◽  
2018 ◽  
Vol 9 (4) ◽  
Author(s):  
Alexander Kühnl ◽  
Agnes Musiol ◽  
Nicole Heitzig ◽  
Danielle E. Johnson ◽  
Christina Ehrhardt ◽  
...  

ABSTRACTTo transfer the viral genome into the host cell cytoplasm, internalized influenza A virus (IAV) particles depend on the fusion of the IAV envelope with host endosomal membranes. The antiviral host interferon (IFN) response includes the upregulation of interferon-induced transmembrane protein 3 (IFITM3), which inhibits the release of the viral content into the cytosol. Although IFITM3 induction occurs concomitantly with late endosomal/lysosomal (LE/L) cholesterol accumulation, the functional significance of this process is not well understood. Here we report that LE/L cholesterol accumulation itself plays a pivotal role in the early antiviral defense. We demonstrate that inducing LE/L cholesterol accumulation is antiviral in non-IFN-primed cells, restricting incoming IAV particles and impairing mixing of IAV/endosomal membrane lipids. Our results establish a protective function of LE/L cholesterol accumulation and suggest endosomal cholesterol balance as a possible antiviral target.IMPORTANCEWith annual epidemics occurring in all parts of the world and the risk of global outbreaks, influenza A virus (IAV) infections remain a major threat to public health. Infected host cells detect viral components and mount an interferon (IFN)-mediated response to restrict virus propagation and spread of infection. Identification of cellular factors and underlying mechanisms that establish such an antiviral state can provide novel strategies for the development of antiviral drugs. The contribution of LE/L cholesterol levels, especially in the context of the IFN-induced antiviral response, has remained controversial so far. Here, we report that accumulation of cholesterol in the LE/L compartment contributes to the IFN-induced host cell defense against incoming IAV. Our results establish cholesterol accumulation in LE/Lper seas a novel antiviral barrier and suggest the endosomal cholesterol balance as a putative druggable host cell factor in IAV infection.

2015 ◽  
Vol 308 (3) ◽  
pp. L270-L286 ◽  
Author(s):  
Behzad Yeganeh ◽  
Saeid Ghavami ◽  
Andrea L. Kroeker ◽  
Thomas H. Mahood ◽  
Gerald L. Stelmack ◽  
...  

Subcellular trafficking within host cells plays a critical role in viral life cycles, including influenza A virus (IAV). Thus targeting relevant subcellular compartments holds promise for effective intervention to control the impact of influenza infection. Bafilomycin A1(Baf-A1), when used at relative high concentrations (≥10 nM), inhibits vacuolar ATPase (V-ATPase) and reduces endosome acidification and lysosome number, thus inhibiting IAV replication but promoting host cell cytotoxicity. We tested the hypothesis that much lower doses of Baf-A1also have anti-IAV activity, but without toxic effects. Thus we assessed the antiviral activity of Baf-A1at different concentrations (0.1–100 nM) in human alveolar epithelial cells (A549) infected with IAV strain A/PR/8/34 virus (H1N1). Infected and mock-infected cells pre- and cotreated with Baf-A1were harvested 0–24 h postinfection and analyzed by immunoblotting, immunofluorescence, and confocal and electron microscopy. We found that Baf-A1had disparate concentration-dependent effects on subcellular organelles and suppressed affected IAV replication. At concentrations ≥10 nM Baf-A1inhibited acid lysosome formation, which resulted in greatly reduced IAV replication and release. Notably, at a very low concentration of 0.1 nM that is insufficient to reduce lysosome number, Baf-A1retained the capacity to significantly impair IAV nuclear accumulation as well as IAV replication and release. In contrast to the effects of high concentrations of Baf-A1, very low concentrations did not exhibit cytotoxic effects or induce apoptotic cell death, based on morphological and FACS analyses. In conclusion, our results reveal that low-concentration Baf-A1is an effective inhibitor of IAV replication, without impacting host cell viability.


2019 ◽  
Author(s):  
Senlian Hong ◽  
Geramie Grande ◽  
Chenhua Yu ◽  
Digantkumar G. Chapla ◽  
Natalie Reigh ◽  
...  

AbstractHost cell-surface glycans play critical roles in influenza A virus (IAV) infection ranging from modulation of IAV attachment to membrane fusion and host tropism. Approaches for quick and sensitive profiling of the viral avidity towards a specific type of host-cell glycan can contribute to the understanding of tropism switching among different strains of IAV. In this study, we developed a method based on chemoenzymatic glycan engineering to investigate the possible involvement of α1-2-fucosides in IAV infections. Using a truncated human fucosyltransferase 1 (hFuT1), we were able to create α1-2-linked fucosides in situ on the host cell surface to assess their influence on the host cell binding to IAV hemagglutinin and the susceptibility of host cells toward IAV induced killing. We discovered that the newly added α1-2-fucosides on host cells enhanced the infection of several human pandemic IVA subtypes. These findings suggest that glycan epitopes other than sialic aicds should be taken into consideration for assessing the human pandemic risk of this viral pathogen.


2016 ◽  
Vol 113 (42) ◽  
pp. 11931-11936 ◽  
Author(s):  
Wenqian He ◽  
Gene S. Tan ◽  
Caitlin E. Mullarkey ◽  
Amanda J. Lee ◽  
Mannie Man Wai Lam ◽  
...  

The generation of strain-specific neutralizing antibodies against influenza A virus is known to confer potent protection against homologous infections. The majority of these antibodies bind to the hemagglutinin (HA) head domain and function by blocking the receptor binding site, preventing infection of host cells. Recently, elicitation of broadly neutralizing antibodies which target the conserved HA stalk domain has become a promising “universal” influenza virus vaccine strategy. The ability of these antibodies to elicit Fc-dependent effector functions has emerged as an important mechanism through which protection is achieved in vivo. However, the way in which Fc-dependent effector functions are regulated by polyclonal influenza virus-binding antibody mixtures in vivo has never been defined. Here, we demonstrate that interactions among viral glycoprotein-binding antibodies of varying specificities regulate the magnitude of antibody-dependent cell-mediated cytotoxicity induction. We show that the mechanism responsible for this phenotype relies upon competition for binding to HA on the surface of infected cells and virus particles. Nonneutralizing antibodies were poor inducers and did not inhibit antibody-dependent cell-mediated cytotoxicity. Interestingly, anti-neuraminidase antibodies weakly induced antibody-dependent cell-mediated cytotoxicity and enhanced induction in the presence of HA stalk-binding antibodies in an additive manner. Our data demonstrate that antibody specificity plays an important role in the regulation of ADCC, and that cross-talk among antibodies of varying specificities determines the magnitude of Fc receptor-mediated effector functions.


2016 ◽  
Vol 136 ◽  
pp. 48-54 ◽  
Author(s):  
Qiao Wang ◽  
Qinghe Li ◽  
Ranran Liu ◽  
Maiqing Zheng ◽  
Jie Wen ◽  
...  

2018 ◽  
Vol 93 (2) ◽  
Author(s):  
Saira Hussain ◽  
Matthew L. Turnbull ◽  
Helen M. Wise ◽  
Brett W. Jagger ◽  
Philippa M. Beard ◽  
...  

ABSTRACTThe PA-X protein of influenza A virus has roles in host cell shutoff and viral pathogenesis. While most strains are predicted to encode PA-X, strain-dependent variations in activity have been noted. We found that PA-X protein from the A/PR/8/34 (PR8) strain had significantly lower repressive activity against cellular gene expression than PA-X proteins from the avian strains A/turkey/England/50-92/91 (H5N1) (T/E) and A/chicken/Rostock/34 (H7N1). Loss of normal PA-X expression, either by mutation of the frameshift site or by truncating the X open reading frame (ORF), had little effect on the infectious virus titer of PR8 or PR8 7:1 reassortants with T/E segment 3 grown in embryonated hens’ eggs. However, in both virus backgrounds, mutation of PA-X led to decreased embryo mortality and lower overall pathology, effects that were more pronounced in the PR8 strain than in the T/E reassortant, despite the low shutoff activity of the PR8 PA-X. Purified PA-X mutant virus particles displayed an increased ratio of hemagglutinin (HA) to nucleoprotein (NP) and M1 compared to values for their wild-type (WT) counterparts, suggesting altered virion composition. When the PA-X gene was mutated in the background of poorly growing PR8 6:2 vaccine reassortant analogues containing the HA and neuraminidase (NA) segments from H1N1 2009 pandemic viruses or from an avian H7N3 strain, HA yield increased up to 2-fold. This suggests that the PR8 PA-X protein may harbor a function unrelated to host cell shutoff and that disruption of the PA-X gene has the potential to improve the HA yield of vaccine viruses.IMPORTANCEInfluenza A virus is a widespread pathogen that affects both humans and a variety of animal species, causing regular epidemics and sporadic pandemics, with major public health and economic consequences. A better understanding of virus biology is therefore important. The primary control measure is vaccination, which for humans mostly relies on antigens produced in eggs from PR8-based viruses bearing the glycoprotein genes of interest. However, not all reassortants replicate well enough to supply sufficient virus antigen for demand. The significance of our research lies in identifying that mutation of the PA-X gene in the PR8 strain of virus can improve antigen yield, potentially by decreasing the pathogenicity of the virus in embryonated eggs.


Cell ◽  
2020 ◽  
Vol 180 (1) ◽  
pp. 205
Author(s):  
Michael D. Vahey ◽  
Daniel A. Fletcher

Science ◽  
2014 ◽  
Vol 346 (6208) ◽  
pp. 473-477 ◽  
Author(s):  
Indranil Banerjee ◽  
Yasuyuki Miyake ◽  
Samuel Philip Nobs ◽  
Christoph Schneider ◽  
Peter Horvath ◽  
...  

2015 ◽  
Vol 90 (5) ◽  
pp. 2403-2417 ◽  
Author(s):  
Chuan Xia ◽  
Madhuvanthi Vijayan ◽  
Curtis J. Pritzl ◽  
Serge Y. Fuchs ◽  
Adrian B. McDermott ◽  
...  

ABSTRACTInfluenza A virus (IAV) employs diverse strategies to circumvent type I interferon (IFN) responses, particularly by inhibiting the synthesis of type I IFNs. However, it is poorly understood if and how IAV regulates the type I IFN receptor (IFNAR)-mediated signaling mode. In this study, we demonstrate that IAV induces the degradation of IFNAR subunit 1 (IFNAR1) to attenuate the type I IFN-induced antiviral signaling pathway. Following infection, the level of IFNAR1 protein, but not mRNA, decreased. Indeed, IFNAR1 was phosphorylated and ubiquitinated by IAV infection, which resulted in IFNAR1 elimination. The transiently overexpressed IFNAR1 displayed antiviral activity by inhibiting virus replication. Importantly, the hemagglutinin (HA) protein of IAV was proved to trigger the ubiquitination of IFNAR1, diminishing the levels of IFNAR1. Further, influenza A viral HA1 subunit, but not HA2 subunit, downregulated IFNAR1. However, viral HA-mediated degradation of IFNAR1 was not caused by the endoplasmic reticulum (ER) stress response. IAV HA robustly reduced cellular sensitivity to type I IFNs, suppressing the activation of STAT1/STAT2 and induction of IFN-stimulated antiviral proteins. Taken together, our findings suggest that IAV HA causes IFNAR1 degradation, which in turn helps the virus escape the powerful innate immune system. Thus, the research elucidated an influenza viral mechanism for eluding the IFNAR signaling pathway, which could provide new insights into the interplay between influenza virus and host innate immunity.IMPORTANCEInfluenza A virus (IAV) infection causes significant morbidity and mortality worldwide and remains a major health concern. When triggered by influenza viral infection, host cells produce type I interferon (IFN) to block viral replication. Although IAV was shown to have diverse strategies to evade this powerful, IFN-mediated antiviral response, it is not well-defined if IAV manipulates the IFN receptor-mediated signaling pathway. Here, we uncovered that influenza viral hemagglutinin (HA) protein causes the degradation of type I IFN receptor subunit 1 (IFNAR1). HA promoted phosphorylation and polyubiquitination of IFNAR1, which facilitated the degradation of this receptor. The HA-mediated elimination of IFNAR1 notably decreased the cells' sensitivities to type I IFNs, as demonstrated by the diminished expression of IFN-induced antiviral genes. This discovery could help us understand how IAV regulates the host innate immune response to create an environment optimized for viral survival in host cells.


Sign in / Sign up

Export Citation Format

Share Document