scholarly journals Early Interactions of Murine Macrophages with Francisella tularensis Map to Mouse Chromosome 19

mBio ◽  
2016 ◽  
Vol 7 (2) ◽  
Author(s):  
Avner Fink ◽  
Musa A. Hassan ◽  
Nihal A. Okan ◽  
Michal Sheffer ◽  
Ana Camejo ◽  
...  

ABSTRACT Differences among individuals in susceptibility to infectious diseases can be modulated by host genetics. Much of the research in this field has aimed to identify loci within the host genome that are associated with these differences. In mice, A/J (AJ) and C57BL/6J (B6) mice show differential susceptibilities to various pathogens, including the intracellular pathogen Francisella tularensis . Because macrophages are the main initial target during F. tularensis infection, we explored early interactions of macrophages from these two mouse strains with F. tularensis as well as the genetic factors underlying these interactions. Our results indicate that bacterial interactions with bone marrow-derived macrophages (BMDMs) during early stages of infection are different in the AJ and B6 strains. During these early stages, bacteria are more numerous in B6 than in AJ macrophages and display differences in trafficking and early transcriptional response within these macrophages. To determine the genetic basis for these differences, we infected BMDMs isolated from recombinant inbred (RI) mice derived from reciprocal crosses between AJ and B6, and we followed early bacterial counts within these macrophages. Quantitative trait locus (QTL) analysis revealed a locus on chromosome 19 that is associated with early differences in bacterial counts in AJ versus B6 macrophages. QTL analysis of published data that measured the differential susceptibilities of the same RI mice to an in vivo challenge with F. tularensis confirmed the F. tularensis susceptibility QTL on chromosome 19. Overall, our results show that early interactions of macrophages with F. tularensis are dependent on the macrophage genetic background. IMPORTANCE Francisella tularensis is a highly pathogenic bacterium with a very low infectious dose in humans. Some mechanisms of bacterial virulence have been elucidated, but the host genetic factors that contribute to host resistance or susceptibility are largely unknown. In this work, we have undertaken a genetic approach to assess what these factors are in mice. Analyzing early interactions of macrophages with the bacteria as well as data on overall susceptibility to infection revealed a locus on chromosome 19 that is associated with both phenotypes. In addition, our work revealed differences in the early macrophage response between macrophages with different genetic backgrounds. Overall, this work suggests some intriguing links between in vitro and in vivo infection models and should aid in further elucidating the genetic circuits behind the host response to Francisella tularensis infection.

2021 ◽  
Vol 7 (2) ◽  
pp. 130
Author(s):  
Nathan P. Wiederhold

Invasive infections caused by Candida that are resistant to clinically available antifungals are of increasing concern. Increasing rates of fluconazole resistance in non-albicans Candida species have been documented in multiple countries on several continents. This situation has been further exacerbated over the last several years by Candida auris, as isolates of this emerging pathogen that are often resistant to multiple antifungals. T-2307 is an aromatic diamidine currently in development for the treatment of invasive fungal infections. This agent has been shown to selectively cause the collapse of the mitochondrial membrane potential in yeasts when compared to mammalian cells. In vitro activity has been demonstrated against Candida species, including C. albicans, C. glabrata, and C. auris strains, which are resistant to azole and echinocandin antifungals. Activity has also been reported against Cryptococcus species, and this has translated into in vivo efficacy in experimental models of invasive candidiasis and cryptococcosis. However, little is known regarding the clinical efficacy and safety of this agent, as published data from studies involving humans are not currently available.


Author(s):  
Maria Cristina Budani ◽  
Gian Mario Tiboni

Nitric oxide (NO) is formed during the oxidation of L-arginine to L-citrulline by the action of multiple isoenzymes of NO synthase (NOS): neuronal NOS (nNOS), endotelial NOS (eNOS), and inducible NOS (iNOS). NO plays a relevant role in the vascular endothelium, in central and peripheral neurons, and in immunity and inflammatory systems. In addition, several authors showed a consistent contribution of NO to different aspects of the reproductive physiology. The aim of the present review is to analyse the published data on the role of NO within the ovary. It has been demonstrated that the multiple isoenzymes of NOS are expressed and localized in the ovary of different species. More to the point, a consistent role was ascribed to NO in the processes of steroidogenesis, folliculogenesis, and oocyte meiotic maturation in in vitro and in vivo studies using animal models. Unfortunately, there are few nitric oxide data for humans; there are preliminary data on the implication of nitric oxide for oocyte/embryo quality and in-vitro fertilization/embryo transfer (IVF/ET) parameters. NO plays a remarkable role in the ovary, but more investigation is needed, in particular in the context of human ovarian physiology.


Author(s):  
Julian Alfke ◽  
Uta Kampermann ◽  
Svetlana Kalinina ◽  
Melanie Esselen

AbstractDietary polyphenols like epigallocatechin-3-gallate (EGCG)—which represents the most abundant flavan-3-ol in green tea—are subject of several studies regarding their bioactivity and health-related properties. On many occasions, cell culture or in vitro experiments form the basis of published data. Although the stability of these compounds is observed to be low, many reported effects are directly related to the parent compounds whereas the impact of EGCG degradation and autoxidation products is not yet understood and merely studied. EGCG autoxidation products like its dimers theasinensin A and D, “P2” and oolongtheanin are yet to be characterized in the same extent as their parental polyphenol. However, to investigate the bioactivity of autoxidation products—which would minimize the discrepancy between in vitro and in vivo data—isolation and structure elucidation techniques are urgently needed. In this study, a new protocol to acquire the dimers theasinensin A and D as well as oolongtheanin is depicted, including a variety of spectroscopic and quadrupole time-of-flight high-resolution mass spectrometric (qTOF-HRMS) data to characterize and assign these isolates. Through nuclear magnetic resonance (NMR) spectroscopy, polarimetry, and especially circular dichroism (CD) spectroscopy after enzymatic hydrolysis the complementary atropisomeric stereochemistry of the isolated theasinensins is illuminated and elucidated. Lastly, a direct comparison between the isolated EGCG autoxidation products and the monomer itself is carried out regarding their antioxidant properties featuring Trolox equivalent antioxidant capacity (TEAC) values. These findings help to characterize these products regarding their cellular effects and—which is of special interest in the flavonoid group—their redox properties.


1998 ◽  
Vol 6 (3-4) ◽  
pp. 331-342 ◽  
Author(s):  
Christoph Specht ◽  
Hans-Gerd Pauels ◽  
Christian Becker ◽  
Eckehart Kölsch

The involvement of counteractiveCD8+T-cell subsets during tumor-specific immune responses was analyzed in a syngeneic murine plasmacytoma model.CD8+Tc cells against the immunogenic IL-10-producing BALB/c plasmacytoma ADJ-PC-5 can be easily induced by immunization of BALB/c mice with X-irradiated ADJ-PC-5 tumor cellsin vivoandin vitro. However, the failure of recipient mice to mount a protective Tc response against the tumor during early stages of a real or simulated tumor growth is not due to immunological ignorance, but depends on the induction of tumor-specific tolerance, involving a population of tumorinducedCD8+T cells that are able to inhibit the generation of tumor-specific Tc cells in a primary ADJ-PC-5-specific MLTC, using IFN-γas a suppressive factor. Whereas most longterm cultivated CD8+ADJ-PC-5-specific Tc lines produce type-1 cytokines on stimulation, at least two of them, which were derived from a primary MLTC, display a type-2 cytokine spectrum. Furthermore, the primaryin vitroTc response against ADJ-PC-5 cells shows characteristics of a Tc2 response. The Tc response is strictly depending on tumor-derived IL-10.CD8+Tc cells that are induced in a primary MLTC do not produce IFN-γ, and the tumor-specific Tc response is enhanced by IL-4 but suppressed by IFN-γor IL-12. In contrast, ADJ-PC- 5-specificCD8+Tc cells from immunized mice are IFN-γproducing Tc1 cells. Since the primaryin vitroTc response against the tumor is suppressed even by the smallest numbers of irradiated ADJ-PC-5-specific Tc1 cells via IFN-γthese Tc1 cells behave similar to the suppressiveCD8+T cells that are induced during early stages of ADJ-PC-5 tumorigenesis.


2016 ◽  
Vol 60 (4) ◽  
pp. 2052-2062 ◽  
Author(s):  
Ky V. Hoang ◽  
Heather Curry ◽  
Michael A. Collier ◽  
Hassan Borteh ◽  
Eric M. Bachelder ◽  
...  

ABSTRACTFrancisella tularensiscauses tularemia and is a potential biothreat. Given the limited antibiotics for treating tularemia and the possible use of antibiotic-resistant strains as a biowarfare agent, new antibacterial agents are needed. AR-12 is an FDA-approved investigational new drug (IND) compound that induces autophagy and has shown host-directed, broad-spectrum activityin vitroagainstSalmonella entericaserovar Typhimurium andF. tularensis. We have shown that AR-12 encapsulated within acetalated dextran (Ace-DEX) microparticles (AR-12/MPs) significantly reduces host cell cytotoxicity compared to that with free AR-12, while retaining the ability to controlS.Typhimurium within infected human macrophages. In the present study, the toxicity and efficacy of AR-12/MPs in controlling virulent type AF. tularensisSchuS4 infection were examinedin vitroandin vivo. No significant toxicity of blank MPs or AR-12/MPs was observed in lung histology sections when the formulations were given intranasally to uninfected mice. In histology sections from the lungs of intranasally infected mice treated with the formulations, increased macrophage infiltration was observed for AR-12/MPs, with or without suboptimal gentamicin treatment, but not for blank MPs, soluble AR-12, or suboptimal gentamicin alone. AR-12/MPs dramatically reduced the burden ofF. tularensisin infected human macrophages, in a manner similar to that of free AR-12. However,in vivo, AR-12/MPs significantly enhanced the survival ofF. tularensisSchuS4-infected mice compared to that seen with free AR-12. In combination with suboptimal gentamicin treatment, AR-12/MPs further improved the survival ofF. tularensisSchuS4-infected mice. These studies provide support for Ace-DEX-encapsulated AR-12 as a promising new therapeutic agent for tularemia.


2002 ◽  
Vol 9 (3) ◽  
pp. 151-159 ◽  
Author(s):  
Geert Raes ◽  
Wim Noël ◽  
Alain Beschin ◽  
Lea Brys ◽  
Patrick de Baetselier ◽  
...  

Although it is well-established that macrophages can occur in distinct activation states, the molecular characteristics of differentially activated macrophages, and particularly those of alternatively activated macrophages (aaMφ), are still poorly unraveled. Recently, we demonstrated that the expression of FIZZ1 and Ym is induced in aaMφ as compared with classically activated macrophages (caMφ), elicitedin vitroor developedin vivoduring infection withTrypanosoma brucei brucei. In the present study, we analyzed the expression of FIZZ1 and Ym in caMφ and aaMφ elicited duringTrypanosoma congolenseinfection and show that the use of FIZZ1 and Ym for the identification of aaMφ is not limited toT. b. bruceiinfection and is independent of the organ sources from which macrophages are obtained. We also demonstrate that FIZZ1 can be used to discriminate between different populations of aaMφ. Furthermore, we studied the effects of various stimuli, and combinations thereof, on the expression of FIZZ1 and Ym in macrophages from different mouse strains and demonstrate that regulation of the expression of FIZZ1 and Ym in macrophages is not dependent on the mouse strain. Finally, we show that these genes can be used to monitor the macrophage activation status without the need to obtain pure macrophage populations.


2010 ◽  
Vol 84 (19) ◽  
pp. 9864-9878 ◽  
Author(s):  
Michael E. Abram ◽  
Andrea L. Ferris ◽  
Wei Shao ◽  
W. Gregory Alvord ◽  
Stephen H. Hughes

ABSTRACT There is considerable HIV-1 variation in patients. The extent of the variation is due to the high rate of viral replication, the high viral load, and the errors made during viral replication. Mutations can arise from errors made either by host DNA-dependent RNA polymerase II or by HIV-1 reverse transcriptase (RT), but the relative contributions of these two enzymes to the mutation rate are unknown. In addition, mutations in RT can affect its fidelity, but the effect of mutations in RT on the nature of the mutations that arise in vivo is poorly understood. We have developed an efficient system, based on existing technology, to analyze the mutations that arise in an HIV-1 vector in a single cycle of replication. A lacZα reporter gene is used to identify viral DNAs that contain mutations which are analyzed by DNA sequencing. The forward mutation rate in this system is 1.4 × 10−5 mutations/bp/cycle, equivalent to the retroviral average. This rate is about 3-fold lower than previously reported for HIV-1 in vivo and is much lower than what has been reported for purified HIV-1 RT in vitro. Although the mutation rate was not affected by the orientation of lacZα, the sites favored for mutations (hot spots) in lacZα depended on which strand of lacZα was present in the viral RNA. The pattern of hot spots seen in lacZα in vivo did not match any of the published data obtained when purified RT was used to copy lacZα in vitro.


Vaccines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1408
Author(s):  
Qiao Li ◽  
Zhihua Liu ◽  
Yi Liu ◽  
Chen Liang ◽  
Jiayi Shu ◽  
...  

TFPR1 is a novel adjuvant for protein and peptide antigens, which has been demonstrated in BALB/c mice in our previous studies; however, its adjuvanticity in mice with different genetic backgrounds remains unknown, and its adjuvanticity needs to be improved to fit the requirements for various vaccines. In this study, we first compared the adjuvanticity of TFPR1 in two commonly used inbred mouse strains, BALB/c and C57BL/6 mice, in vitro and in vivo, and demonstrated that TFPR1 activated TLR2 to exert its immune activity in vivo. Next, to prove the feasibility of TFPR1 acting as a major component of combined adjuvants, we prepared a combined adjuvant, TF–Al, by formulating TFPR1 and alum at a certain ratio and compared its adjuvanticity with that of TFPR1 and alum alone using OVA and recombinant HBsAg as model antigens in both BALB/c and C57BL/6 mice. Results showed that TFPR1 acts as an effective vaccine adjuvant in both BALB/c mice and C57BL/6 mice, and further demonstrated the role of TLR2 in the adjuvanticity of TFPR1 in vivo. In addition, we obtained a novel combined adjuvant, TF–Al, based on TFPR1, which can augment antibody and cellular immune responses in mice with different genetic backgrounds, suggesting its promise for vaccine development in the future.


2021 ◽  
Author(s):  
Belén Casas ◽  
Liisa Vilén ◽  
Sophie Bauer ◽  
Kajsa Kanebratt ◽  
Charlotte Wennberg Huldt ◽  
...  

Microphysiological systems (MPS) are powerful tools for emulating human physiology and replicating disease progression in vitro. MPS could be better predictors of human outcome than current animal models, but mechanistic interpretation and in vivo extrapolation of the experimental results remain significant challenges. Here, we address these challenges using an integrated experimental-computational approach. This approach allows for in silico representation and predictions of glucose metabolism in a previously reported MPS with two organ compartments (liver and pancreas) connected in a closed loop with circulating medium. We developed a computational model describing glucose metabolism over 15 days of culture in the MPS. The model was calibrated on an experiment-specific basis using data from seven experiments, where single-liver or liver-islet cultures were exposed to both normal and hyperglycemic conditions resembling high blood glucose levels in diabetes. The calibrated models reproduced the fast (i.e. hourly) variations in glucose and insulin observed in the MPS experiments, as well as the long-term (i.e. over weeks) decline in both glucose tolerance and insulin secretion. We also investigated the behavior of the system under hypoglycemia by simulating this condition in silico, and the model could correctly predict the glucose and insulin responses measured in new MPS experiments. Last, we used the computational model to translate the experimental results to humans, showing good agreement with published data of the glucose response to a meal in healthy subjects. The integrated experimental-computational framework opens new avenues for future investigations toward disease mechanisms and the development of new therapies for metabolic disorders.


2020 ◽  
Vol 48 (21) ◽  
pp. 11942-11957
Author(s):  
Giulia Miglietta ◽  
Marco Russo ◽  
Giovanni Capranico

Abstract Genomic DNA and cellular RNAs can form a variety of non-B secondary structures, including G-quadruplex (G4) and R-loops. G4s are constituted by stacked guanine tetrads held together by Hoogsteen hydrogen bonds and can form at key regulatory sites of eukaryote genomes and transcripts, including gene promoters, untranslated exon regions and telomeres. R-loops are 3-stranded structures wherein the two strands of a DNA duplex are melted and one of them is annealed to an RNA. Specific G4 binders are intensively investigated to discover new effective anticancer drugs based on a common rationale, i.e.: the selective inhibition of oncogene expression or specific impairment of telomere maintenance. However, despite the high number of known G4 binders, such a selective molecular activity has not been fully established and several published data point to a different mode of action. We will review published data that address the close structural interplay between G4s and R-loops in vitro and in vivo, and how these interactions can have functional consequences in relation to G4 binder activity. We propose that R-loops can play a previously-underestimated role in G4 binder action, in relation to DNA damage induction, telomere maintenance, genome and epigenome instability and alterations of gene expression programs.


Sign in / Sign up

Export Citation Format

Share Document