scholarly journals Omomyc Reveals New Mechanisms To Inhibit the MYC Oncogene

2019 ◽  
Vol 39 (22) ◽  
Author(s):  
Mark J. Demma ◽  
Claudio Mapelli ◽  
Angie Sun ◽  
Smaranda Bodea ◽  
Benjamin Ruprecht ◽  
...  

ABSTRACT The MYC oncogene is upregulated in human cancers by translocation, amplification, and mutation of cellular pathways that regulate Myc. Myc/Max heterodimers bind to E box sequences in the promoter regions of genes and activate transcription. The MYC inhibitor Omomyc can reduce the ability of MYC to bind specific box sequences in promoters of MYC target genes by binding directly to E box sequences as demonstrated by chromatin immunoprecipitation (CHIP). Here, we demonstrate by both a proximity ligation assay (PLA) and double chromatin immunoprecipitation (ReCHIP) that Omomyc preferentially binds to Max, not Myc, to mediate inhibition of MYC-mediated transcription by replacing MYC/MAX heterodimers with Omomyc/MAX heterodimers. The formation of Myc/Max and Omomyc/Max heterodimers occurs cotranslationally; Myc, Max, and Omomyc can interact with ribosomes and Max RNA under conditions in which ribosomes are intact. Taken together, our data suggest that the mechanism of action of Omomyc is to bind DNA as either a homodimer or a heterodimer with Max that is formed cotranslationally, revealing a novel mechanism to inhibit the MYC oncogene. We find that in vivo, Omomyc distributes quickly to kidneys and liver and has a short effective half-life in plasma, which could limit its use in vivo.

2018 ◽  
Vol 103 (11) ◽  
pp. 4241-4252 ◽  
Author(s):  
Yohan Choi ◽  
Katherine L Rosewell ◽  
Mats Brännström ◽  
James W Akin ◽  
Thomas E Curry ◽  
...  

Abstract Context Fos null mice failed to ovulate and form a corpus luteum (CL) even when given exogenous gonadotropins, suggesting that ovarian Fos expression is critical for successful ovulation and CL formation. However, little is known about FOS in the human ovary. Objectives To determine the expression, regulation, and function of FOS in human periovulatory follicles. Design/Participants Timed periovulatory follicles were obtained from normally cycling women. Granulosa/lutein cells were collected from in vitro fertilization patients. Main Outcome Measures The in vivo expression after human chorionic gonadotropin (hCG) administration and in vitro regulation of FOS, JUN, JUNB, and JUND was evaluated at the mRNA and protein level. Binding of progesterone receptor (PGR) and FOS to their target genes was assessed by chromatin immunoprecipitation analyses. Prostaglandin E2 (PGE2) and progesterone were measured. Results The expression of FOS, JUNB, and JUND drastically increased in ovulatory follicles after hCG administration. In human granulosa/lutein cell cultures, hCG increased the expression of FOS and JUN proteins. Inhibitors of PGR and epidermal growth factor (EGF) receptors reduced hCG-induced increases in the expression and phosphorylation of FOS. PGR bound to the FOS gene. A selective FOS inhibitor blocked hCG-induced increases in PGE2 and the expression of prostaglandin (PG) synthases and transporters (PTGES, SLCO2A1, and ABCC1). FOS bound to the promoter regions of these genes. Conclusions The increase of FOS/activator protein 1 in human periovulatory follicles after hCG administration is mediated by collaborative actions of PGR and EGF signaling and critical for the upregulated expression of key ovulatory genes required for the rise in ovulatory PG in human granulosa cells.


2005 ◽  
Vol 102 (34) ◽  
pp. 12117-12122 ◽  
Author(s):  
G. Perini ◽  
D. Diolaiti ◽  
A. Porro ◽  
G. Della Valle

2003 ◽  
Vol 23 (8) ◽  
pp. 2800-2820 ◽  
Author(s):  
Mark J. Swanson ◽  
Hongfang Qiu ◽  
Laarni Sumibcay ◽  
Anna Krueger ◽  
Soon-ja Kim ◽  
...  

ABSTRACT Transcriptional activators interact with multisubunit coactivators that modify chromatin structure or recruit the general transcriptional machinery to their target genes. Budding yeast cells respond to amino acid starvation by inducing an activator of amino acid biosynthetic genes, Gcn4p. We conducted a comprehensive analysis of viable mutants affecting known coactivator subunits from the Saccharomyces Genome Deletion Project for defects in activation by Gcn4p in vivo. The results confirm previous findings that Gcn4p requires SAGA, SWI/SNF, and SRB mediator (SRB/MED) and identify key nonessential subunits of these complexes required for activation. Among the numerous histone acetyltransferases examined, only that present in SAGA, Gcn5p, was required by Gcn4p. We also uncovered a dependence on CCR4-NOT, RSC, and the Paf1 complex. In vitro binding experiments suggest that the Gcn4p activation domain interacts specifically with CCR4-NOT and RSC in addition to SAGA, SWI/SNF, and SRB/MED. Chromatin immunoprecipitation experiments show that Mbf1p, SAGA, SWI/SNF, SRB/MED, RSC, CCR4-NOT, and the Paf1 complex all are recruited by Gcn4p to one of its target genes (ARG1) in vivo. We observed considerable differences in coactivator requirements among several Gcn4p-dependent promoters; thus, only a subset of the array of coactivators that can be recruited by Gcn4p is required at a given target gene in vivo.


2004 ◽  
Vol 279 (50) ◽  
pp. 52183-52190 ◽  
Author(s):  
Pascale Jackers ◽  
Gabor Szalai ◽  
Omar Moussa ◽  
Dennis K. Watson

Megakaryopoiesis is the process by which hematopoietic stem cells in the bone marrow differentiate into mature megakaryocytes. The expression of megakaryocytic genes during megakaryopoiesis is controlled by specific transcription factors. Fli-1 and GATA-1 transcription factors are required for development of megakaryocytes and promoter analysis has definedin vitrofunctional binding sites for these factors in several megakaryocytic genes, includingGPIIb,GPIX, andC-MPL. Herein, we utilize chromatin immunoprecipitation to examine the presence of Ets-1, Fli-1, and GATA-1 on these promotersin vivo. Fli-1 and Ets-1 occupy the promoters ofGPIIb,GPIX, andC-MPLgenes in both Meg-01 and CMK11-5 cells. WhereasGPIIbis expressed in both Meg-01 and CMK11-5 cells,GPIXandC-MPLare only expressed in the more differentiated CMK11–5 cells. Thus,in vivooccupancy by an Ets factor is not sufficient to promote transcription of some megakaryocytic genes. GATA-1 and Fli-1 are both expressed in CMK11-5 cells and co-occupy theGPIXandC-MPLpromoters. Transcription of all three megakaryocytic genes is correlated with the presence of acetylated histone H3 and phosphorylated RNA polymerase II on their promoters. We also show that exogenous expression of GATA-1 in Meg-01 cells leads to the expression of endogenous c-mpl and gpIX mRNA. WhereasGPIIb,GPIX, andC-MPLare direct target genes for Fli-1, both Fli-1 and GATA-1 are required for formation of an active transcriptional complex on theC-MPLandGPIXpromotersin vivo. In contrast,GPIIbexpression appears to be independent of GATA-1 in Meg-01 cells.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4670-4670 ◽  
Author(s):  
Lior Binder ◽  
Ahuva Bar-Ilan ◽  
Malka Hoffman ◽  
Gili Hart

Abstract Introduction: OPKO Biologics is a clinical-stage public company developing bio-better long-acting versions of existing therapeutic proteins, utilizing a technology termed CTP. The technology involves fusion of the C-terminal peptide of hCG to a target protein. The aim of this work was to comprehensively assess the feasibility of intravenous (IV) or subcutaneous (SC) administration of FVIIa-CTP (MOD-5014) utilizing the most relevant in vivo pre-clinical models, and to characterize the FVIIa-CTP mechanism of action in preparation for an on-going clinical study. Methods: FVII-CTP was expressed in CHO cells, purified and activated utilizing a CTP-specific purification process. FVIIa-CTP's pharmacokinetics (PK), pharmacodynamics (PD), long-term hemostatic effect and safety parameters were extensively characterized following SC and IV administration in transient FVII-/- rats and FVIII-/- mice. In addition, the long-term hemostatic effect of FVIIa-CTP was evaluated following a bleeding challenge and compared to commercial rFVIIa. Finally, interaction with co-factors, activity, and the off-target effect of FVIIa-CTP was comprehensively characterized. Results: The studies demonstrated that FVIIa-CTP provides long-term exposure (AUC) and half-life that are significantly superior to those of rFVIIa, and consistent with the prolonged half-life of FVIIa-CTP (at an average of 3- and 5-fold, respectively) when compared to IV or SC administration of FVIIa. In addition, a 30% increase in bioavailability was observed relative to commercial FVIIa. A profound improvement in clotting parameters and survival rate following TVT, as well as a reduction of bleeding duration and intensity in tail-clip studies were obtained for both routes of administration for up to 48 hours. Moreover, the safety profile of FVIIa-CTP was further confirmed. Conclusion: Attachments of CTP to FVIIa led to a pronounced enhancement of PK and PD, increased exposure as reflected by AUC, elevated half-life, and improved recovery in mice, rats and pigs following SC and IV administration. FVIIa-CTP injection resulted in an improved bioavailability that translated to a marked in vivo hemostatic effect. Our data suggest that CTP-fused FVIIa can potentially provide a novel approach for IV or SC prophylactic treatment of hemophilic patients (both pediatric and adult), with the major benefit of significant improvement in quality of life. Disclosures No relevant conflicts of interest to declare.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 372 ◽  
Author(s):  
Delasa Aghamirzaie ◽  
Karthik Raja Velmurugan ◽  
Shuchi Wu ◽  
Doaa Altarawy ◽  
Lenwood S. Heath ◽  
...  

Motivation: The increasing availability of chromatin immunoprecipitation sequencing (ChIP-Seq) data enables us to learn more about the action of transcription factors in the regulation of gene expression. Even though in vivo transcriptional regulation often involves the concerted action of more than one transcription factor, the format of each individual ChIP-Seq dataset usually represents the action of a single transcription factor. Therefore, a relational database in which available ChIP-Seq datasets are curated is essential. Results: We present Expresso (database and webserver) as a tool for the collection and integration of available Arabidopsis ChIP-Seq peak data, which in turn can be linked to a user’s gene expression data. Known target genes of transcription factors were identified by motif analysis of publicly available GEO ChIP-Seq data sets. Expresso currently provides three services: 1) Identification of target genes of a given transcription factor; 2) Identification of transcription factors that regulate a gene of interest; 3) Computation of correlation between the gene expression of transcription factors and their target genes. Availability: Expresso is freely available at http://bioinformatics.cs.vt.edu/expresso/


2020 ◽  
Author(s):  
Norman Zielke ◽  
Anna Vähärautio ◽  
Jianping Liu ◽  
Jussi Taipale

AbstractThe transcription factor Myc is activated in most major forms of human cancer. Myc regulates a large set of target genes, and drives cell growth across animal phyla. However, it has not been clear which target genes are required for Myc-induced growth, and whether the targets are individually necessary or act in an additive fashion. Here, we have used comparative functional genomics to identify a core set of Myc target genes whose regulation is conserved between humans and Drosophila melanogaster. Most of these targets are essential genes involved in ribosome biogenesis and ribonucleotide metabolism. To identify Drosophila genes whose upregulation is necessary for Myc induced growth, we deleted the Myc binding sites (E-boxes) in the promoter regions of four genes using CRISPR/Cas9. All mutant flies were homozygous viable, indicating that E-box sequences are not required for basal expression of the Myc target genes. E-Box deletions in RpS20, RpS24 and Nop56 did not cause strong growth phenotypes. However, deletion of the E-box in the rRNA processing factor Peter Pan (ppan) made the flies resistant to Myc-induced cell growth, without affecting Myc-induced apoptosis. Despite their failure to respond to Myc, the ppanEbox−/− flies are healthy and display only a minor developmental delay, suggesting that it may be possible to treat or prevent tumorigenesis by targeting individual downstream targets of Myc.


2007 ◽  
Vol 35 (2) ◽  
pp. 305-310 ◽  
Author(s):  
S. Rimpi ◽  
J.A. Nilsson

The Myc oncogenes are dysregulated in 70% of human cancers. They encode transcription factors that bind to E-box sequences in DNA, driving the expression of a vast amount of target genes. The biological outcome is enhanced proliferation (which is counteracted by apoptosis), angiogenesis and cancer. Based on the biological effects of Myc overexpression it was originally assumed that the important Myc target genes are those encoding components of the cell cycle machinery. Recent work has challenged this notion and indicates that Myc target genes encoding metabolic enzymes deserve attention, as they may be critical arbiters of Myc in cancer. Thus targeting metabolic enzymes encoded by Myc-target genes may provide a new means to treat cancer that have arisen in response to deregulated Myc oncogenes.


2015 ◽  
Vol 71 (8) ◽  
pp. 1768-1776 ◽  
Author(s):  
Xiaojiao Fan ◽  
Xu Zhang ◽  
Yuwei Zhu ◽  
Liwen Niu ◽  
Maikun Teng ◽  
...  

The SaeR/S two-component regulatory system is essential for controlling the expression of many virulence factors inStaphylococcus aureus. SaeR, a member of the OmpR/PhoB family, is a response regulator with an N-terminal regulatory domain and a C-terminal DNA-binding domain. In order to elucidate how SaeR binds to the promoter regions of target genes, the crystal structure of the DNA-binding domain of SaeR (SaeRDBD) was solved at 2.5 Å resolution. The structure reveals that SaeRDBDexists as a monomer and has the canonical winged helix–turn–helix module. EMSA experiments suggested that full-length SaeR can bind to the P1 promoter and that the binding affinity is higher than that of its C-terminal DNA-binding domain. Five key residues on the winged helix–turn–helix module were verified to be important for binding to the P1 promoterin vitroand for the physiological function of SaeRin vivo.


Sign in / Sign up

Export Citation Format

Share Document