scholarly journals Systematic Analysis of Human Cells Lacking ATG8 Proteins Uncovers Roles for GABARAPs and the CCZ1/MON1 Regulator C18orf8/RMC1 in Macroautophagic and Selective Autophagic Flux

2017 ◽  
Vol 38 (1) ◽  
Author(s):  
Laura Pontano Vaites ◽  
Joao A. Paulo ◽  
Edward L. Huttlin ◽  
J. Wade Harper

ABSTRACT Selective autophagy and macroautophagy sequester specific organelles/substrates or bulk cytoplasm, respectively, inside autophagosomes as cargo for delivery to lysosomes. The mammalian ATG8 orthologues (MAP1LC3A/B/C and GABARAP/L1/L2) are ubiquitin (UB)-like proteins conjugated to the autophagosome membrane and are thought to facilitate cargo receptor recruitment, vesicle maturation, and lysosomal fusion. To elucidate the molecular functions of the ATG8 proteins, we engineered cells lacking genes for each subfamily as well as all six mammalian ATG8s. Loss of GABARAPs alone attenuates autophagic flux basally and in response to macroautophagic or selective autophagic stimuli, including parkin-dependent mitophagy, and cells lacking all ATG8 proteins accumulate cytoplasmic UB aggregates, which are resolved following ectopic expression of individual GABARAPs. Autophagosomes from cells lacking GABARAPs had reduced lysosomal content by quantitative proteomics, consistent with fusion defects, but accumulated regulators of late endosome (LE)/autophagosome maturation. Through interaction proteomics of proteins accumulating in GABARAP/L1/L2-deficient cells, we identified C18orf8/RMC1 as a new subunit of the CCZ1-MON1 RAB7 guanine exchange factor (GEF) that positively regulates RAB7 recruitment to LE/autophagosomes. This work defines unique roles for GABARAP and LC3 subfamilies in macroautophagy and selective autophagy and demonstrates how analysis of autophagic machinery in the absence of flux can identify new regulatory circuits.

2001 ◽  
Vol 73 (3) ◽  
pp. 561-566 ◽  
Author(s):  
Alain-M. Boudet ◽  
Matthieu Chabannes

In this article we highlight the contribution of molecular biology and lignin genetic engineering toward a better understanding of lignin biosynthesis and spatio-temporal deposition of lignin. Specific examples from the literature and from our laboratory will serve to underline the chemical flexibility of lignins, the complexity of the regulatory circuits involved in their synthesis, and the specific behavior of different cell types within the xylem. We will also focus on strategies aiming to reduce the lignin content or to modify the lignin composition of plants and present their impact on plant development. We will show that the ectopic expression of a specific transgene may have a different impact, depending on the genetic background, and that plants with a severe reduction in lignin content may undergo normal development. Lignification is currently benefiting enormously from recent developments in molecular biology and transgenesis, and the progress made opens the way for future developments to study how the walls of lignified plant cells are built and organized.


2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Yoonjung Kwon ◽  
Yeojin Bang ◽  
Soung-Hee Moon ◽  
Aeri Kim ◽  
Hyun Jin Choi

Abstract Amitriptyline is a tricyclic antidepressant commonly prescribed for major depressive disorders, as well as depressive symptoms associated with various neurological disorders. A possible correlation between the use of tricyclic antidepressants and the occurrence of Parkinson’s disease has been reported, but its underlying mechanism remains unknown. The accumulation of misfolded protein aggregates has been suggested to cause cellular toxicity and has been implicated in the common pathogenesis of neurodegenerative diseases. Here, we examined the effect of amitriptyline on protein clearance and its relevant mechanisms in neuronal cells. Amitriptyline exacerbated the accumulation of abnormal aggregates in both in vitro neuronal cells and in vivo mice brain by interfering with the (1) formation of aggresome-like aggregates and (2) autophagy-mediated clearance of aggregates. Amitriptyline upregulated LC3B-II, but LC3B-II levels did not increase further in the presence of NH4Cl, which suggests that amitriptyline inhibited autophagic flux rather than autophagy induction. Amitriptyline interfered with the fusion of autophagosome and lysosome through the activation of PI3K/Akt/mTOR pathway and Beclin 1 acetylation, and regulated lysosome positioning by increasing the interaction between proteins Arl8, SKIP, and kinesin. To the best of our knowledge, we are the first to demonstrate that amitriptyline interferes with autophagic flux by regulating the autophagosome maturation during autophagy in neuronal cells. The present study could provide neurobiological clue for the possible correlation between the amitriptyline use and the risk of developing neurodegenerative diseases.


2020 ◽  
Vol 21 (19) ◽  
pp. 7180
Author(s):  
Hongfeng Wang ◽  
Hongjiao Jiang ◽  
Yiteng Xu ◽  
Yan Wang ◽  
Lin Zhu ◽  
...  

Gibberellins (GAs), a class of phytohormones, act as an essential natural regulator of plant growth and development. Many studies have shown that GA is related to rhizobial infection and nodule organogenesis in legume species. However, thus far, GA metabolism and signaling components are largely unknown in the model legume Medicago truncatula. In this study, a genome-wide analysis of GA metabolism and signaling genes was carried out. In total 29 components, including 8 MtGA20ox genes, 2 MtGA3ox genes, 13 MtGA2ox genes, 3 MtGID1 genes, and 3 MtDELLA genes were identified in M. truncatula genome. Expression profiles revealed that most members of MtGAox, MtGID1, and MtDELLA showed tissue-specific expression patterns. In addition, the GA biosynthesis and deactivation genes displayed a feedback regulation on GA treatment, respectively. Yeast two-hybrid assays showed that all the three MtGID1s interacted with MtDELLA1 and MtDELLA2, suggesting that the MtGID1s are functional GA receptors. More importantly, M. truncatula exhibited increased plant height and biomass by ectopic expression of the MtGA20ox1, suggesting that enhanced GA response has the potential for forage improvement.


2002 ◽  
Vol 3 (2) ◽  
pp. 102-108 ◽  
Author(s):  
Javier Paz-Ares ◽  
The REGIA Consortium

Transcription factors (TFs) are regulatory proteins that have played a pivotal role in the evolution of eukaryotes and that also have great biotechnological potential. REGIA (REgulatory Gene Initiative in Arabidopsis) is an EU-funded project involving 29 European laboratories with the objective of determining the function of virtually all transcription factors from the model plant,Arabidopsis thaliana. REGIA involves: 1. the definition ofTFgene expression patterns inArabidopsis; 2. the identification of mutations atTFloci; 3. the ectopic expression of TFs (or derivatives) inArabidopsisand in crop plants; 4. phenotypic analysis of the mutants and mis-expression lines, including both RNA and metabolic profiling; 5. the systematic analysis of interactions between TFs; and 6. the generation of a bioinformatics infrastructure to access and integrate all this information. We expect that this programme will establish the full biotechnological potential of plant TFs, and provide insights into hierarchies, redundancies, and interdependencies, and their evolution. The project involves the preparation of both aTFgene array for expression analysis and a normalised full length open reading frame (ORF) library of TFs in a yeast two hybrid vector; the applications of these resources should extend beyond the scope of this programme.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Bo Dong ◽  
Xiaojin Xu ◽  
Guoqing Chen ◽  
Dandan Zhang ◽  
Mingzhi Tang ◽  
...  

Abstract Conidiation patterning is evolutionarily complex and mechanism concerning conidiogenous cell differentiation remains largely unknown. Magnaporthe oryzae conidiates in a sympodial way and uses its conidia to infect host and disseminate blast disease. Arrestins are multifunctional proteins that modulate receptor down-regulation and scaffold components of intracellular trafficking routes. We here report an alpha-arrestin that regulates patterns of conidiation and contributes to pathogenicity in M. oryzae. We show that disruption of ARRDC1 generates mutants which produce conidia in an acropetal array and ARRDC1 significantly affects expression profile of CCA1, a virulence-related transcription factor required for conidiogenous cell differentiation. Although germ tubes normally develop appressoria, penetration peg formation is dramatically impaired and Δarrdc1 mutants are mostly nonpathogenic. Fluorescent analysis indicates that EGFP-ARRDC1 puncta are well colocalized with DsRed2-Atg8, and this distribution profile could not be altered in Δatg9 mutants, suggesting ARRDC1 enters into autophagic flux before autophagosome maturation. We propose that M. oryzae employs ARRDC1 to regulate specific receptors in response to conidiation-related signals for conidiogenous cell differentiation and utilize autophagosomes for desensitization of conidiogenous receptor, which transmits extracellular signal to the downstream elements of transcription factors. Our investigation extends novel significance of autophagy-associated alpha-arrestin signaling to fungal parasites.


2021 ◽  
Author(s):  
Ruiqi Chen ◽  
Yichong Ning ◽  
Guirong Zeng ◽  
Hao Zhou ◽  
Chao Tu ◽  
...  

Abstract Background: MiR-193a-5p has been observed to have oncogenic or tumor-suppressive function in different kinds of cancers. Na+/Ca2+ exchangers (NCX1, NCX2 and NCX3) normally extrude Ca2+ from the cell, and deregulation of the intracellular Ca2+ homeostasis is related to several kinds of diseases, including cancer. However, their roles and molecular mechanism in osteosarcoma are elusive.Methods: The expression of miR-193a-5p and NCX2 in osteosarcoma and corresponding adjacent noncancerous tissues was investigated by qRT-PCR. Colony formation assay, wound healing assay, transwell invasion assay and xenograft mouse model were used for in vitro and in vivo functional analyses. Tandem mass tag-based quantitative proteomics analysis was performed to identify the targets of miR-193a-5p.Results: This study showed that miR-193a-5p was upregulated in osteosarcoma tissues compared with the corresponding adjacent noncancerous tissues, and promoted colony formation, migration, invasion, and epithelial-mesenchymal transition (EMT) in vitro, as well as metastasis in vivo. Quantitative proteomics analysis identified NCX2 as a potential target of miR-193a-5p. Luciferase activity assay and Western blotting further confirmed that miR-193a-5p recognized the 3′-untranslated region of NCX2 mRNA, and negatively regulated NCX2 expression. NCX2 was downregulated in osteosarcoma tissues, and its expression was negatively correlated with miR-193a-5p levels. Ectopic expression of NCX2 in osteosarcoma cells could counteract the oncogenic effects of miR-193a-5p. These results indicate that miR-193a-5p exerts its effects by targeting NCX2. Further study demonstrated that NCX2 suppressed Ca2+-dependent Akt phosphorylation by decreasing intracellular Ca2+ efflux, then inhibited EMT process. Treatment with the antagomir against miR-193a-5p sensitized osteosarcoma to the Akt inhibitor afuresertib in a murine xenograft tumor model. Conclusion: This study revealed a miR-193a-5p/NCX2/AKT signaling axis in the progression of osteosarcoma, which may provide a new therapeutic target for osteosarcoma treatment.


2016 ◽  
Vol 212 (5) ◽  
pp. 577-590 ◽  
Author(s):  
Candia M. Kenific ◽  
Samantha J. Stehbens ◽  
Juliet Goldsmith ◽  
Andrew M. Leidal ◽  
Nathalie Faure ◽  
...  

Autophagy is a catabolic pathway involving the sequestration of cellular contents into a double-membrane vesicle, the autophagosome. Although recent studies have demonstrated that autophagy supports cell migration, the underlying mechanisms remain unknown. Using live-cell imaging, we uncover that autophagy promotes optimal migratory rate and facilitates the dynamic assembly and disassembly of cell-matrix focal adhesions (FAs), which is essential for efficient motility. Additionally, our studies reveal that autophagosomes associate with FAs primarily during disassembly, suggesting autophagy locally facilitates the destabilization of cell-matrix contact sites. Furthermore, we identify the selective autophagy cargo receptor neighbor of BRCA1 (NBR1) as a key mediator of autophagy-dependent FA remodeling. NBR1 depletion impairs FA turnover and decreases targeting of autophagosomes to FAs, whereas ectopic expression of autophagy-competent, but not autophagy-defective, NBR1 enhances FA disassembly and reduces FA lifetime during migration. Our findings provide mechanistic insight into how autophagy promotes migration by revealing a requirement for NBR1-mediated selective autophagy in enabling FA disassembly in motile cells.


2021 ◽  
Author(s):  
Vinay Eapen ◽  
Sharan Swarup ◽  
Melisa J Hoyer ◽  
Joao A Paulo ◽  
J Wade Harper

Removal of damaged organelles via the process of selective autophagy constitutes a major form of cellular quality control. Damaged organelles are recognized by a dedicated surveillance machinery, leading to the assembly of an autophagosome around the damaged organelle, prior to fusion with the degradative lysosomal compartment. Lysosomes themselves are also prone to damage and are degraded through the process of lysophagy. While early steps involve recognition of ruptured lysosomal membranes by glycan-binding Galectins and ubiquitylation of transmembrane lysosomal proteins, many steps in the process, and their inter-relationships, remain poorly understood, including the role and identity of cargo receptors required for completion of lysophagy. Here, we employ quantitative organelle capture and proximity biotinylation proteomics of autophagy adaptors, cargo receptors, and Galectins in response to acute lysosomal damage, thereby revealing the landscape of lysosomal proteome remodeling during lysophagy. Among proteins dynamically recruited to damaged lysosomes were ubiquitin-binding autophagic cargo receptors. Using newly developed lysophagic flux reporters including Lyso-Keima, we demonstrate that TAX1BP1, together with its associated kinase TBK1, are both necessary and sufficient to promote lysophagic flux in both Hela cells and induced neurons (iNeurons). While the related receptor OPTN can drive damage-dependent lysophagy when overexpressed, cells lacking either OPTN or CALCOCO2 still maintain significant lysophagic flux in HeLa cells. Mechanistically, TAX1BP1-driven lysophagy requires its N-terminal SKICH domain, which binds both TBK1 and the autophagy regulatory factor RB1CC1, and requires upstream ubiquitylation events for efficient recruitment and lysophagic flux. These results identify TAX1BP1 as a central component in the lysophagy pathway and provide a proteomic resource for future studies of the lysophagy process.


2018 ◽  
Vol 4 (11) ◽  
pp. eaav0443 ◽  
Author(s):  
J.-M. Heo ◽  
A. Ordureau ◽  
S. Swarup ◽  
J. A. Paulo ◽  
K. Shen ◽  
...  

Removal of damaged mitochondria is orchestrated by a pathway involving the PINK1 kinase and the PARKIN ubiquitin ligase. Ubiquitin chains assembled by PARKIN on the mitochondrial outer membrane recruit autophagy cargo receptors in complexes with TBK1 protein kinase. While TBK1 is known to phosphorylate cargo receptors to promote ubiquitin binding, it is unknown whether TBK1 phosphorylates other proteins to promote mitophagy. Using global quantitative proteomics, we identified S72 in RAB7A, a RAB previously linked with mitophagy, as a dynamic target of TBK1 upon mitochondrial depolarization. TBK1 directly phosphorylates RAB7AS72, but not several other RABs known to be phosphorylated on the homologous residue by LRRK2, in vitro, and this modification requires PARKIN activity in vivo. Interaction proteomics using nonphosphorylatable and phosphomimetic RAB7A mutants revealed loss of association of RAB7AS72E with RAB GDP dissociation inhibitor and increased association with the DENN domain–containing heterodimer FLCN-FNIP1. FLCN-FNIP1 is recruited to damaged mitochondria, and this process is inhibited in cells expressing RAB7AS72A. Moreover, nonphosphorylatable RAB7A failed to support efficient mitophagy, as well as recruitment of ATG9A-positive vesicles to damaged mitochondria. These data reveal a novel function for TBK1 in mitophagy, which parallels that of LRRK2-mediated phosphorylation of the homologous site in distinct RABs to control membrane trafficking.


Sign in / Sign up

Export Citation Format

Share Document