scholarly journals The Nuclear Hormone Receptor Peroxisome Proliferator-Activated Receptor β/δ Potentiates Cell Chemotactism, Polarization, and Migration

2007 ◽  
Vol 27 (20) ◽  
pp. 7161-7175 ◽  
Author(s):  
Nguan Soon Tan ◽  
Guillaume Icre ◽  
Alexandra Montagner ◽  
Béatrice Bordier-ten Heggeler ◽  
Walter Wahli ◽  
...  

ABSTRACT After an injury, keratinocytes acquire the plasticity necessary for the reepithelialization of the wound. Here, we identify a novel pathway by which a nuclear hormone receptor, until now better known for its metabolic functions, potentiates cell migration. We show that peroxisome proliferator-activated receptor β/δ (PPARβ/δ) enhances two phosphatidylinositol 3-kinase-dependent pathways, namely, the Akt and the Rho-GTPase pathways. This PPARβ/δ activity amplifies the response of keratinocytes to a chemotactic signal, promotes integrin recycling and remodeling of the actin cytoskeleton, and thereby favors cell migration. Using three-dimensional wound reconstructions, we demonstrate that these defects have a strong impact on in vivo skin healing, since PPARβ/δ−/− mice show an unexpected and rare epithelialization phenotype. Our findings demonstrate that nuclear hormone receptors not only regulate intercellular communication at the organism level but also participate in cell responses to a chemotactic signal. The implications of our findings may be far-reaching, considering that the mechanisms described here are important in many physiological and pathological situations.

2007 ◽  
Vol 28 (2) ◽  
pp. 687-704 ◽  
Author(s):  
Cameron N. Johnstone ◽  
Perry S. Mongroo ◽  
A. Sophie Rich ◽  
Michael Schupp ◽  
Mark J. Bowser ◽  
...  

ABSTRACT Parvin-β is a focal adhesion protein downregulated in human breast cancer cells. Loss of Parvin-β contributes to increased integrin-linked kinase activity, cell-matrix adhesion, and invasion through the extracellular matrix in vitro. The effect of ectopic Parvin-β expression on the transcriptional profile of MDA-MB-231 breast cancer cells, which normally do not express Parvin-β, was evaluated. Particular emphasis was placed upon propagating MDA-MB-231 breast cancer cells in three-dimensional culture matrices. Interestingly, Parvin-β reexpression in MDA-MB-231 cells increased the mRNA expression, serine 82 phosphorylation (mediated by CDK9), and activity of the nuclear hormone receptor peroxisome proliferator-activated receptor gamma (PPARγ), and there was a concomitant increase in lipogenic gene expression as a downstream effector of PPARγ. Importantly, Parvin-β suppressed breast cancer growth in vivo, with associated decreased proliferation. These data suggest that Parvin-β might influence breast cancer progression.


PPAR Research ◽  
2008 ◽  
Vol 2008 ◽  
pp. 1-6 ◽  
Author(s):  
Rosemary E. Teresi ◽  
Kristin A. Waite

Peroxisome proliferator-activated receptor gamma (PPAR) is a ligand-activated transcription factor, which belongs to the family of nuclear hormone receptors. Recent in vitro studies have shown that PPAR can regulate the transcription ofphosphatase and tensin homolog on chromosometen(PTEN), a known tumor suppressor.PTENis a susceptibility gene for a number of disorders, including breast and thyroid cancer. Activation of PPAR through agonists increases functional PTEN protein levels that subsequently induces apoptosis and inhibits cellular growth, which suggests that PPAR may be a tumor suppressor. Indeed, several in vivo studies have demonstrated that genetic alterations of PPAR can promote tumor progression. These results are supported by observations of the beneficial effects of PPAR agonists in the in vivo cancer setting. These studies signify the importance of PPAR andPTEN's interaction in cancer prevention.


2021 ◽  
Author(s):  
Kelsie R. S. Doering ◽  
Xuanjin Cheng ◽  
Luke Milburn ◽  
Ramesh Ratnappan ◽  
Arjumand Ghazi ◽  
...  

AbstractThe response to insufficient oxygen (hypoxia) is orchestrated by the conserved Hypoxia-Inducible Factor (HIF). However, HIF-independent hypoxia response pathways exist that act in parallel to HIF to mediate the physiological hypoxia response. Here, we describe a HIF-independent hypoxia response pathway controlled byCaenorhabditis elegansNuclear Hormone Receptor NHR-49, an orthologue of mammalian Peroxisome Proliferator-Activated Receptor alpha (PPARα). We show thatnhr-49is required for worm survival in hypoxia and is synthetic lethal withhif-1in this context, demonstrating that these factors act independently. RNA-seq analysis shows that in hypoxianhr-49regulates a set of genes that arehif-1-independent, including autophagy genes that promote hypoxia survival. We further show that Nuclear Hormone Receptornhr-67is a negative regulator and Homeodomain-interacting Protein Kinasehpk-1is a positive regulator of the NHR-49 pathway. Together, our experiments define a new, essential hypoxia response pathway that acts in parallel to the well-known HIF-mediated hypoxia response.


2004 ◽  
Vol 24 (11) ◽  
pp. 4651-4663 ◽  
Author(s):  
Nunciada Salma ◽  
Hengyi Xiao ◽  
Elisabetta Mueller ◽  
Anthony N. Imbalzano

ABSTRACT The peroxisome proliferator-activated receptor gamma (PPARγ) regulates adipogenesis, lipid metabolism, and glucose homeostasis, and roles have emerged for this receptor in the pathogenesis and treatment of diabetes, atherosclerosis, and cancer. We report here that induction of the PPARγ activator and adipogenesis forced by overexpression of adipogenic regulatory proteins is blocked upon expression of dominant-negative BRG1 or hBRM, the ATPase subunits of distinct SWI/SNF chromatin-remodeling enzymes. We demonstrate that histone hyperacetylation and the binding of C/EBP activators, polymerase II (Pol II), and general transcription factors (GTFs) initially occurred at the inducible PPARγ2 promoter in the absence of SWI/SNF function. However, the polymerase and GTFs were subsequently lost from the promoter in cells expressing dominant-negative SWI/SNF, explaining the inhibition of PPARγ2 expression. To corroborate these data, we analyzed interactions at the PPARγ2 promoter in differentiating preadipocytes. Changes in promoter structure, histone hyperacetylation, and binding of C/EBP activators, Pol II, and most GTFs preceded the interaction of SWI/SNF enzymes with the PPARγ2 promoter. However, transcription of the PPARγ2 gene occurred only upon subsequent association of SWI/SNF and TFIIH with the promoter. Thus, induction of the PPARγ nuclear hormone receptor during adipogenesis requires SWI/SNF enzymes to facilitate preinitiation complex function.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Yong Gao ◽  
Dongfeng Han ◽  
Laisheng Sun ◽  
Qihua Huang ◽  
Guangchao Gai ◽  
...  

Peroxisome proliferator-activated receptor α (PPARα) is a member of the nuclear hormone receptor superfamily and functions as a transcription factor. Previous work showed that PPARα plays multiple roles in lipid metabolism in tissues such as cardiac and skeletal muscle, liver, and adipose tissue. Recent studies have discovered additional roles for PPARα in cell proliferation and metabolism, as well as tumor progression. PPARα is aberrantly expressed in various cancers, and activated PPARα inhibits the proliferation of some tumor cells. However, there have been no studies of PPARα in human gliomas. Here, we show that PPARα is expressed at lower levels in anaplastic gliomas and glioblastoma multiforme (GBM) tissue compared with low-grade gliomas tissue, and low expression is associated with poor patient prognosis. PPARα activates transcription of dynamin-3 opposite strand (DNMO3os), which encodes a cluster of miR-214, miR-199a-3p, and miR-199a-5p microRNAs. Of these, miR-214 is transcribed at particularly high levels. PPARα-induced miR-214 expression causes downregulation of its target E2F2. Finally, miR-214 overexpression inhibits glioma cell growth in vitro and in vivo by inducing cell cycle arrest in G0/G1. Collectively, these data uncover a novel role for a PPARα-miR-214-E2F2 pathway in controlling glioma cell proliferation.


2002 ◽  
Vol 22 (16) ◽  
pp. 5782-5792 ◽  
Author(s):  
Dangsheng Li ◽  
Tong Li ◽  
Fang Wang ◽  
Heather Tian ◽  
Herbert H. Samuels

ABSTRACT Many members of the thyroid hormone/retinoid receptor subfamily (type II nuclear receptors) function as heterodimers with the retinoid X receptor (RXR). In heterodimers which are referred to as permissive, such as peroxisome proliferator activated receptor/RXR, both partners can bind cognate ligands and elicit ligand-dependent transactivation. In contrast, the thyroid hormone receptor (TR)/RXR heterodimer is believed to be nonpermissive, where RXR is thought to be incapable of ligand binding and is often referred to as a silent partner. In this report, we used a sensitive derepression assay system that we developed previously to reexamine the TR/RXR interrelationship. We provide functional evidence suggesting that in a TR/RXR heterodimer, the RXR component can bind its ligand in vivo. Ligand binding by RXR does not appear to directly activate the TR/RXR heterodimer; instead, it leads to a (at least transient or dynamic) dissociation of a cellular inhibitor(s)/corepressor(s) from its TR partner and thus may serve to modulate unliganded TR-mediated repression and/or liganded TR-mediated activation. Our results argue against the current silent-partner model for RXR in the TR/RXR heterodimer and reveal an unexpected aspect of cross regulation between TR and RXR.


2001 ◽  
Vol 21 (7) ◽  
pp. 2298-2311 ◽  
Author(s):  
Mukul Mathur ◽  
Philip W. Tucker ◽  
Herbert H. Samuels

ABSTRACT Members of the type II nuclear hormone receptor subfamily (e.g., thyroid hormone receptors [TRs], retinoic acid receptors, retinoid X receptors [RXRs], vitamin D receptor, and the peroxisome proliferator-activated receptors) bind to their response sequences with or without ligand. In the absence of ligand, these DNA-bound receptors mediate different degrees of repression or silencing of gene expression which is thought to result from the association of their ligand binding domains (LBDs) with corepressors. Two related corepressors, N-CoR and SMRT, interact to various degrees with the LBDs of these type II receptors in the absence of their cognate ligands. N-CoR and SMRT have been proposed to act by recruiting class I histone deacetylases (HDAC I) through an association with Sin3, although they have also been shown to recruit class II HDACs through a Sin3-independent mechanism. In this study, we used a biochemical approach to identify novel nuclear factors that interact with unliganded full-length TR and RXR. We found that the DNA binding domains (DBDs) of TR and RXR associate with two proteins which we identified as PSF (polypyrimidine tract-binding protein-associated splicing factor) and NonO/p54 nrb . Our studies indicate that PSF is a novel repressor which interacts with Sin3A and mediates silencing through the recruitment of HDACs to the receptor DBD. In vivo studies with TR showed that although N-CoR fully dissociates in the presence of ligand, the levels of TR-bound PSF and Sin3A appear to remain unchanged, indicating that Sin3A can be recruited to the receptor independent of N-CoR or SMRT. RXR was not detected to bind N-CoR although it bound PSF and Sin3A as effectively as TR, and this association with RXR did not change with ligand. Our studies point to a novel PSF/Sin3-mediated pathway for nuclear hormone receptors, and possibly other transcription factors, which may fine-tune the transcriptional response as well as play an important role in mediating the repressive effects of those type II receptors which only weakly interact with N-CoR and SMRT.


2002 ◽  
Vol 366 (1) ◽  
pp. 157-163 ◽  
Author(s):  
Loretto H. PUCKEY ◽  
Brian L. KNIGHT

A high plasma concentration of lipoprotein(a) [Lp(a)] confers an increased risk for the development of coronary heart disease. Hormones, such as oestrogen, are some of the few compounds known to reduce plasma Lp(a) levels. A putative enhancer region, located at the DHII DNase I hypersensitive site approx. 28kb upstream of the apolipoprotein(a) [apo(a)] gene, contains a number of sequences similar to the binding half-sites for nuclear hormone receptors, such as the oestrogen receptor and the peroxisome proliferator-activated receptor (PPAR). The 180bp core DHII enhancer increased the activity of the apo(a) promoter by over 7-fold in reporter-gene assays in HepG2 cells in vitro. Almost 60% of this increase was lost in the presence of co-transfected oestrogen receptor and oestrogen. In contrast, co-transfection with PPARα increased the effect of the DHII enhancer on apo(a) transcriptional activity by approx. 70% and could overcome the inhibitory effect of the oestrogen receptor on apo(a) transcription. Gel mobility-shift assays showed that oestrogen receptor protein bound to one half of a sequence corresponding to a predicted oestrogen receptor response element. PPARα also bound to this site and competed with oestrogen receptors for binding. In addition, PPARα bound to a separate site that comprised part of a direct repeat of nuclear hormone receptor half-sites. The results suggest that nuclear hormones affect plasma Lp(a) concentrations by binding to the sequences within the DHII enhancer, thereby altering the amount by which the enhancer increases the transcription of the apo(a) gene.


2010 ◽  
Vol 10 ◽  
pp. 2181-2197 ◽  
Author(s):  
Martina Victoria Schmidt ◽  
Bernhard Brüne ◽  
Andreas von Knethen

The peroxisome proliferator-activated receptor γ (PPARγ) belongs to the nuclear hormone receptor superfamily and regulates gene expression upon heterodimerization with the retinoid X receptor by ligating to peroxisome proliferator response elements (PPREs) in the promoter region of target genes. Originally, PPARγwas identified as being essential for glucose metabolism. Thus, synthetic PPARγagonists, the thiazolidinediones (TZDs), are used in type 2 diabetes therapy as insulin sensitizers. More recent evidence implied an important role for the nuclear hormone receptor PPARγin controlling various diseases based on its anti-inflammatory, cell cycle arresting, and proapoptotic properties. In this regard, expression of PPARγis not restricted to adipocytes, but is also found in immune cells, such as B and T lymphocytes, monocytes, macrophages, dendritic cells, and granulocytes. The expression of PPARγin lymphoid organs and its modulation of macrophage inflammatory responses, lymphocyte proliferation, cytokine production, and apoptosis underscore its immune regulating functions. Moreover, PPARγexpression is found in tumor cells, where its activation facilitates antitumorigenic actions. This review provides an overview about the role of PPARγas a possible therapeutic target approaching major, severe diseases, such as sepsis, cancer, and atherosclerosis.


Sign in / Sign up

Export Citation Format

Share Document