Long non-coding RNA GAS5 inhibits osteogenic differentiation through miR-382-3p/ TAF1 signaling

Author(s):  
Yuxin Song ◽  
Hui Zhang ◽  
Zhengdong Song ◽  
Yang Yang ◽  
Suifeng Zhang ◽  
...  

Background: Long non-coding RNAs (lncRNAs) have been confirmed as important regulators during osteogenic differentiation. Previous researches have disclosed that growth arrest-specific transcript 5 ( GAS5 ) can promote the osteogenic differentiation of human bone marrow mesenchyml stem cells (hBMSCs), but the underlying regulatory mechanism of GAS5 during the osteogenic differentiation of hBMSCs is unclear. Methods: Osteogenic differentiation was induced in hBMSCs by using osteogenic medium (OM). Gene expression was assessed by RT-qPCR or western blot assays as needed. ALP activity, ALP staining and ARS staining assays were performed to evaluate the impact of GAS5 , microRNA-382-3p (miR-382-3p) and TATA-box binding protein associated factor 1 ( TAF1 ) on osteogenic differentiation in vitro . The interaction among GAS5 , miR-382-3p and TAF1 was determined by RIP, ChIP and luciferase reporter assays. Results: Expression of GAS5 (transcript variant 2) was down-regulated during the osteogenic differentiation of hBMSCs and its overexpression retarded the osteogenic differentiation of hBMSCs. GAS5 inhibited miR-382-3p through targeting RNA-directed microRNA degradation (TDMD). MiR-382-3p down-regulation partially offset the promoted osteogenic differentiation of hBMSCs upon GAS5 silencing. TAF1 negatively modulated osteogenic differentiation and it activated GAS5 transcription so as to form a positive GAS5 /miR-382-3p/ TAF1 feedback loop in hBMSCs. Conclusion: This research was the first to reveal that the GAS5 /miR-382-3p/ TAF1 feedback loop inhibited the osteogenic differentiation of hBMSCs, which provided new clues for exploring the mechanism of osteogenic differentiation and disclosed the potential of GAS5 as a promising target during osteogenic differentiation.

Author(s):  
Xiaohua Li ◽  
Chenyu Guo ◽  
Yong Chen ◽  
Feifei Yu

Long non-coding RNAs (lncRNAs) were reported that related to microvascular dysfunction in diabetic retinopathy (DR), but the potential mechanism remains unknown. This study was designed to elucidate the effects of lncRNA SNHG16 in proliferative DR progression. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to measure the levels of SNHG16 and miR-20a-5p from peripheral blood samples of different participants. Pearson’s correlation analysis on the plasma data was applied to detect correlations between SNHG16 and miR-20a-5p. Finally, the interactions of miR-20a-5p and SNHG16 or E2F1 were assessed by luciferase reporter assays. SNHG16 and E2F1 were increased and miR-20a-5p was decreased in proliferative DR both in vivo and in vitro, when compared with control or non-proliferative DR. E2F1 was identified as the target of miR-20a-5p. MiR-20a-5p interacted with SNHG16 and E2F1, and was controlled by SNHG16. The regulation of SNHG16 on E2F1 was mediated by miR-20a-5p. Cells transfected with SNHG16 OE plasmid markedly increased cell apoptosis and vessel-like formation, whereas the miR-20a-5p mimic partially reversed these effects. Transfection with si-E2F1 plasmid rescued SNHG16 overexpression-aggravated proliferative DR. This study indicated that SNHG16 regulated E2F1 expression by sponging miR-20a-5p and aggravating proliferative DR.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Guijun He ◽  
Wenfeng Yao ◽  
Liang Li ◽  
Yang Wu ◽  
Guojian Feng ◽  
...  

Abstract Background LOXL1-AS1 is a long non-coding RNA (lncRNA) that plays crucial roles in various cancers. However, the functional role of LOXL1-AS1 in laryngocarcinoma remains unclear. Thus we planned to probe into the function and underlying mechanism of LOXL1-AS1 in laryngocarcinoma. Methods Gene expression was evaluated in laryngocarcinoma cells using RT-qPCR. The ability of cell proliferation and migration was assessed by CCK8, colony formation, wound healing and transwell assays. The interaction among LOXL1-AS1, miR-589-5p and TRAF6 was detected by Ago2-RIP, RNA pull down and luciferase reporter assays. Results LOXL1-AS1 was overexpressed in laryngocarcinoma cells. Silencing of LOXL1-AS1 suppressed cell proliferation, migration and EMT in laryngocarcinoma. Moreover, miR-589-5p, the downstream of LOXL1-AS1, directly targeted TRAF6 in laryngocarcinoma. Importantly, LOXL1-AS1 augmented TRAF6 expression in laryngocarcinoma cells by sequestering miR-589-5p. Besides, miR-589-5p worked as a tumor-inhibitor while TRAF6 functioned as a tumor-facilitator in laryngocarcinoma. Of note, rescue experiments both in vitro and in vivo validated that LOXL1-AS1 aggravated the malignancy in laryngocarcinoma by targeting miR-589-5p/TRAF6 pathway. Conclusions LOXL1-AS1 promotes the proliferation and migration of laryngocarcinoma cells through absorbing miR-589-5p to upregulate TRAF6 expression.


2020 ◽  
Author(s):  
Ke Cao ◽  
Liu yan ◽  
He Dong ◽  
Xiao Mengqin ◽  
Xiang Liang ◽  
...  

Abstract Background: The long non-coding RNA (lncRNA),LINC00518, is highly expressed in many human cancers and is involved in cancer progression. However, the potential function and regulatory mechanism of LINC00518 in cutaneous malignant melanoma (CMM) remain unclear. Methods:Short hairpin RNA (shRNA) was used to silence LINC00518 and HIF-1α, and real-time PCR was performed to determine mRNA expression. Then, cell proliferation, colony formation, flow cytometric, scratch, and transwell assays were to examine the influence of LINC00518 silencing on cellular radiosensitivity. Dual luciferase reporter system,CHIP and COIP was used to verify the target relationship between LINC00518,miR‐33a-5b and HIF-1α,.Glycolysis assays were conducted to exam cell glycolysis process. Western blotting was performed to explore the expression of HIF-1α and LDHA. Finally, animal experiments were performed to demonstrate the effect of LINC00518 silencing on the radiosensitivity of melanoma in vivo.Results: LINC00518 expression was significantly upregulated in CMM samples, and LINC00518 levels were associated with poor prognosis of patients with CMM. Knockdown of LINC00518 in CMM cells significantly inhibited cell invasion, migration, proliferation, and clonogenicity. LINC00518-mediated invasion, migration, proliferation, and clonogenicity were negatively regulated by the microRNA, miR-33a-3p, in vitro, which intensified sensitivity to radiotherapy via inhibition of the hypoxia-induced factor 1α (HIF-1α)/lactate dehydrogenase A (LDHA)-glycolysis axis. Additionally, HIF-1α recognized the miR-33a-3p promoter region and recruited histone deacetylase2 (HDAC2), which decreased the expression of miR-33a-3p and formed an LINC00518/miR-33a-3p/HIF-1α negative feedback loop. Furthermore, signalling initially activated glycolysis and radioresistance in CMM cells was recovered by Santacruzamate A (a histone deacetylase inhibitor) and 2-deoxy-D-glucose (a glycolytic inhibitor). Lastly, knockdown of LINC00518 expression sensitized CMM cancer cells to radiotherapy in an in vivo subcutaneously implanted tumour model. Conclusion: LINC00518 was confirmed to be an oncogene in CMM, which induces radioresistance by regulating glycolysis through an miR-33a-3p/HIF-1α negative feedback loop. Our research may provide a potential strategy to improve the treatment outcome of radiotherapy in CMM.


Pathobiology ◽  
2021 ◽  
pp. 1-12
Author(s):  
Ling Zhou ◽  
Xiao-li Xu

<b><i>Background:</i></b> Emerging research has demonstrated that long non-coding RNAs (lncRNAs) attach great importance to the progression of cervical cancer (CC). LncRNA ARAP1-AS1 was involved in the development of several cancers; however, its role in CC is far from being elucidated. <b><i>Methods:</i></b> Real-time PCR (RT-PCR) was employed to detect ARAP1-AS1 and miR-149-3p expression in CC samples. CC cell lines (HeLa and C33A cells) were regarded as the cell models. The biological effect of ARAP1-AS1 on cancer cells was measured using CCK-8 assay, colony formation assay, flow cytometry, Transwell assay and wound healing assay in vitro, and subcutaneous xenotransplanted tumor model and tail vein injection model in vivo. Furthermore, interactions between ARAP1-AS1 and miR-149-3p, miR-149-3p and POU class 2 homeobox 2 (POU2F2) were determined by bioinformatics analysis, qRT-PCR, Western blot, luciferase reporter and RNA immunoprecipitation assay, respectively. <b><i>Results:</i></b> The expression of ARAP1-AS1 was enhanced in CC samples, while miR-149-3p was markedly suppressed. Additionally, ARAP1-AS1 overexpression enhanced the viability, migration, and invasion of CC cells. ARAP1-AS1 downregulated miR-149-3p via sponging it. ARAP1-AS1 and miR-149-3p exhibited a negative correlation in CC samples. On the other hand, ARAP1-AS1 enhanced the expression of POU2F2, which was validated as a target gene of miR-149-3p. <b><i>Conclusion:</i></b> ARAP1-AS1 was abnormally upregulated in CC tissues and indirectly modulated the POU2F2 expression via reducing miR-149-3p expression. Our study identified a novel axis, ARAP1-AS1/miR-149-3p/POU2F2, in CC tumorigenesis.


2021 ◽  
Author(s):  
Yuchen Sun ◽  
Jizhao Wang ◽  
Xuanzi Sun ◽  
Jing Li ◽  
Xu Zhao ◽  
...  

Abstract Background Radioresistance, a poorly understood phenomenon, results in the failure of radiotherapy and consequent local recurrence, threatening a large proportion of ESCC patients. To date, lncRNAs have been found to be involved in diverse biological processes, including radioresistance.Methods ELISA was used to evaluated the H3 modifications in radio-resistant ESCC cells. FISH and qRT-PCR were adopted to examine the expression and localization of lncRNA-NORAD, pri-miR-199a and miR-199a. Electron microscopy and Nanoparticle tracking analysis (NTA) was conducted to observe and identify exosomes. High-throughput RNA sequencing and TMT mass spectrometry were performed to identify the functional lncRNAs and proteins involved in ESCC radioresistance. A series of in vitro and in vivo experiments were performed to investigate the biological effect of NORAD. CHIP, qPCR-RIP, co-IP and dual-luciferase reporter assays were used to explore the interaction of related RNAs and proteins. Results We show here that a DNA damage activated non-coding RNA-NORAD, which is critical for ESCC radio-resistance. NORAD was highly expressed in radio-resistant ESCC cells and tissues. Irradiation treatment promotes NORAD expression via enhancing H3K4me2 enrichment on its region. NORAD knockdown cells exhibit significantly hypersensitivity to irradiation in vivo and in vitro. NORAD is required for initiating repair and restart of stalled forks, G2 cycle arrest and homologous recombination repair upon irradiation treatment. Mechanistically, NORAD inhibits miR-199a expression by competitively binding PUM1 from pri-miR-199a, inhibiting the process of pri-miR-199a. Mature miR-199a in NORAD-knockdown cells can be packaged into exosomes; miR-199a restores the radiosensitivity of radioresistant cells by targeting EEPD1, then inhibiting ATR/Chk1 signaling pathway. Simultaneously, NORAD knockdown blocks the ubiquitination of PD-L1, leads to the better response for radiation and anti-PD-1 treatment in mouse model.Conclusion This study raises the possibility that LncRNA-NORAD could be a potential treatment target for improving the efficiency of immunotherapy in combination with radiation in ESCC.


2020 ◽  
Author(s):  
Juanjuan Shi ◽  
Xijian Xu ◽  
Dan Zhang ◽  
Jiuyan Zhang ◽  
Hui Yang ◽  
...  

Abstract Background: Long non-coding RNA PTPRG antisense RNA 1 (PTPRG-AS1) deregulation has been reported in various human malignancies and identified as an important modulator of cancer development. Few reports have focused on the detailed role of PTPRG-AS1 in epithelial ovarian cancer (EOC) and its underlying mechanism. This study aimed to determine the physiological function of PTPRG-AS1 in EOC. A series of experiments were also performed to identify the mechanisms through which PTPRG-AS1 exerts its function in EOC.Methods: Reverse transcription-quantitative polymerase chain reaction was used to determine PTPRG-AS1 expression in EOC tissues and cell lines. PTPRG-AS1 was silenced in EOC cells and studied with respect to cell proliferation, apoptosis, migration, and invasion in vitro and tumor growth in vivo. The putative miRNAs that target PTPRG-AS1 were predicted using bioinformatics analysis and further confirmed in luciferase reporter and RNA immunoprecipitation assays.Results: Our data verified the upregulation of PTPRG-AS1 in EOC tissues and cell lines. High PTPRG-AS1 expression was associated with shorter overall survival in patients with EOC. Functionally, EOC cell proliferation, migration, invasion in vitro, and tumor growth in vivo were suppressed by PTPRG-AS1 silencing. In contrast, cell apoptosis was promoted by loss of PTPRG-AS1. Regarding the mechanism, PTPRG-AS1 could serve as a competing endogenous RNA in EOC cells by decoying microRNA-545-3p (miR-545-3p), thereby elevating histone deacetylase 4 (HDAC4) expression. Furthermore, rescue experiments revealed that PTPRG-AS1 knockdown-mediated effects on EOC cells were, in part, counteracted by the inhibition of miR-545-3p or restoration of HDAC4.Conclusions: PTPRG-AS1 functioned as an oncogenic lncRNA that aggravated the malignancy of EOC through the miR-545-3p/HDAC4 ceRNA network. Thus, targeting the PTPRG-AS1/miR-545-3p/HDAC4 pathway may be a novel strategy for EOC anticancer therapy.


2018 ◽  
Vol 49 (4) ◽  
pp. 1403-1419 ◽  
Author(s):  
Yunxiuxiu Xu ◽  
Xinxi Luo ◽  
Wenguang He ◽  
Guangcheng Chen ◽  
Yanshan Li ◽  
...  

Background/Aims: To investigate the biological roles and underlying molecular mechanisms of long non-coding RNA (lncRNA) PVT1 in Hepatocellular carcinoma (HCC). Methods: qRT-PCR was performed to measure the expression of miRNA and mRNA. Western blot was performed to measure the protein expression. CCK-8 assay was performed to determine cell proliferation. Flow cytometry was performed to detect cell apoptosis. Wounding-healing assay and Transwell assay was performed to detect cell migration and invasion. Dual luciferase reporter assay was performed to verify the target relationship. Quantichrom iron assay was performed to check uptake level of cellular iron. Results: PVT1 expression was up-regulated in HCC tissues and cell lines. Function studies revealed that PVT1 knockdown significantly suppressed cell proliferation, migration and invasion, and induced cell apoptosis in vitro. Furthermore, PVT1 could directly bind to microRNA (miR)-150 and down-regulate miR-150 expression. Hypoxia-inducible protein 2 (HIG2) was found to be one target gene of miR-150, and PVT1 knockdown could inhibit the expression of HIG2 through up-regulating miR-150 expression. In addition, the expression of miR-150 was down-regulated, while the expression of HIG2 was up-regulated in HCC tissues and cell lines. Moreover, inhibition of miR-150 could partly reverse the biological effects of PVT1 knockdown on proliferation, motility, apoptosis and iron metabolism in vitro, which might be associated with dysregulation of HIG2. In vivo results showed that PVT1 knockdown suppressed tumorigenesis and iron metabolism disorder by regulating the expression of miR-150 and HIG2. Conclusion: Taken together, the present study demonstrates that PVT1/miR-150/HIG2 axis may lead to a better understanding of HCC pathogenesis and provide potential therapeutic targets for HCC.


2020 ◽  
Author(s):  
Jing Ge ◽  
Tao Han ◽  
Lili Shan ◽  
Jing Na ◽  
Ya Li ◽  
...  

Abstract Background Ovarian cancer (OC) is one of the most common malignant tumors in the world. The prognosis of OC remains poor due to the advanced stage and distant metastasis at the time of diagnosis. Recently, a novel lncRNA, THOR (testis-associated highly conserved oncogenic long non-coding RNA), was characterized in human cancers and shown to exhibit an oncogenic role. However, the role of THOR in OC was still unknown.Methods RT-PCR and western blot analysis were used to detect the expression of THOR and p-STAT3. The impact of THOR on OC proliferation, metastasis and self-renew was investigated in vitro and in vivo . The prognostic value of THOR was determined in OC patient cohorts.Results In this study, our results found that THOR was markedly upregulated in human OC tissues and predict the poor prognosis of OC patients. THOR knockdown resulted in significant inhibition of the growth, metastasis and self-renewal of OC cells. Mechanistically, THOR drives OC cell progression via the STAT3 signaling. Moreover, the specific STAT3 inhibitor S3I-201 diminished the discrepancy in the growth, metastatic and self-renewal capacity between THOR-silenced OC cells and control cells, which further confirmed that STAT3 was required in THOR-driven OC cells progression.Conclusion Our findings revealed that THOR could promote OC cells growth, metastasis and self-renew by activating STAT3 signaling and may be a good predictive factor and therapeutic target.


Author(s):  
Xubin Ren ◽  
Nie Xu ◽  
Yunting Zhang ◽  
Tao Wang

Increasing evidence demonstrates that long non-coding RNAs (lncRNAs) play important regulatory roles in mediating initiation and progression of lung adenocarcinoma (LA), which is one of the most lethal in humans. A previous study reported that lncRNAZXF1 was dysregulated in LA and enhanced expression of ZXF1 promoted the invasion and metastasis in LA. However, the effect of ZXF1 on LA progression and its underlying mechanisms were not thoroughly investigated. In our in vitro experiments, qRT-PCR revealed that the expression level of ZXF1 in LA tissues and tumor cells were significantly higher than that in adjacent normal tissues and normal cells. Furthermore, bioinformatics analysis, luciferase reporter assay, western blot and RNA immunoprecipitation (RIP) assay showed that ZXF1 could directly interact with miR-634, which targets GRB2. Therefore, we propose that ZXF1 could function as an oncogene partly by sponging miR-634 and therefore regulating GRB2 expression in LA. Overall, this study demonstrated, for the first time, that the lncRNA ZXF1/miR-634/GRB2 axis plays crucial roles in modulating LA progression. Moreover, lncRNA ZXF1 might potentially improve LA prognosis and serve as a therapeutic target for the treatment of LA.


2020 ◽  
Author(s):  
Jing Ge ◽  
Tao Han ◽  
Lili Shan ◽  
Jing Na ◽  
Ya Li ◽  
...  

Abstract Background: Ovarian cancer (OC) is one of the most common malignant tumors in the world. The prognosis of OC remains poor due to the advanced stage and distant metastasis at the time of diagnosis. Recently, a novel lncRNA, THOR (testis-associated highly conserved oncogenic long non-coding RNA), was characterized in human cancers and shown to exhibit an oncogenic role. However, the role of THOR in OC remains unclear. Methods: RT-PCR and western blot analysis were used to detect the expression of THOR, p-STAT3 and IL-6. The impact of THOR on OC proliferation, metastasis and self-renewal was investigated in vitro and in vivo. The prognostic value of THOR was determined in OC patient cohorts. Results: In this study, our results find that THOR is markedly upregulated in human OC tissues and predicts the poor prognosis of OC patients. Functional studies have revealed that knockdown of THOR inhibits the growth, metastasis and self-renewal of OC cells. Mechanistically, THOR drives OC cell progression via the IL-6/STAT3 signaling. Moreover, the specific STAT3 inhibitor S3I-201 or IL-6R inhibitor tocilizumab diminish the discrepancy in the growth, metastatic and self-renewal capacity between THOR-silenced OC cells and control cells, which further confirm that IL-6/STAT3 is required in THOR-driven OC cells progression. Conclusion: Our findings reveal that THOR could promote OC cells growth, metastasis and self-renewal by activating IL-6/STAT3 signaling and may be a good predictive factor and therapeutic target.


Sign in / Sign up

Export Citation Format

Share Document