scholarly journals Targeting of the ETS Factor Gabpα Disrupts Neuromuscular Junction Synaptic Function

2007 ◽  
Vol 27 (9) ◽  
pp. 3470-3480 ◽  
Author(s):  
Debra A. O'Leary ◽  
Peter G. Noakes ◽  
Nick A. Lavidis ◽  
Ismail Kola ◽  
Paul J. Hertzog ◽  
...  

ABSTRACT The GA-binding protein (GABP) transcription factor has been shown in vitro to regulate the expression of the neuromuscular proteins utrophin, acetylcholine esterase, and acetylcholine receptor subunits δ and ε through the N-box promoter motif (5′-CCGGAA-3′), but its in vivo function remains unknown. A single point mutation within the N-box of the gene encoding the acetylcholine receptor ε subunit has been identified in several patients suffering from postsynaptic congenital myasthenic syndrome, implicating the GA-binding protein in neuromuscular function and disease. Since conventional gene targeting results in an embryonic-lethal phenotype, we used conditional targeting to investigate the role of GABPα in neuromuscular junction and skeletal muscle development. The diaphragm and soleus muscles from mutant mice display alterations in morphology and distribution of acetylcholine receptor clusters at the neuromuscular junction and neurotransmission properties consistent with reduced receptor function. Furthermore, we confirmed decreased expression of the acetylcholine receptor ε subunit and increased expression of the γ subunit in skeletal muscle tissues. Therefore, the GABP transcription factor aids in the structural formation and function of neuromuscular junctions by regulating the expression of postsynaptic genes.

1999 ◽  
Vol 10 (6) ◽  
pp. 2075-2086 ◽  
Author(s):  
Tejvir S. Khurana ◽  
Alan G. Rosmarin ◽  
Jing Shang ◽  
Thomas O. B. Krag ◽  
Saumya Das ◽  
...  

Utrophin/dystrophin-related protein is the autosomal homologue of the chromosome X-encoded dystrophin protein. In adult skeletal muscle, utrophin is highly enriched at the neuromuscular junction. However, the molecular mechanisms underlying regulation of utrophin gene expression are yet to be defined. Here we demonstrate that the growth factor heregulin increases de novo utrophin transcription in muscle cell cultures. Using mutant reporter constructs of the utrophin promoter, we define the N-box region of the promoter as critical for heregulin-mediated activation. Using this region of the utrophin promoter for DNA affinity purification, immunoblots, in vitro kinase assays, electrophoretic mobility shift assays, and in vitro expression in cultured muscle cells, we demonstrate thatets-related GA-binding protein α/β transcription factors are activators of the utrophin promoter. Taken together, these results suggest that the GA-binding protein α/β complex of transcription factors binds and activates the utrophin promoter in response to heregulin-activated extracellular signal–regulated kinase in muscle cell cultures. These findings suggest methods for achieving utrophin up-regulation in Duchenne’s muscular dystrophy as well as mechanisms by which neurite-derived growth factors such as heregulin may influence the regulation of utrophin gene expression and subsequent enrichment at the neuromuscular junction of skeletal muscle.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tatjana Straka ◽  
Charlotte Schröder ◽  
Andreas Roos ◽  
Laxmikanth Kollipara ◽  
Albert Sickmann ◽  
...  

Recent studies have demonstrated that neuromuscular junctions are co-innervated by sympathetic neurons. This co-innervation has been shown to be crucial for neuromuscular junction morphology and functional maintenance. To improve our understanding of how sympathetic innervation affects nerve–muscle synapse homeostasis, we here used in vivo imaging, proteomic, biochemical, and microscopic approaches to compare normal and sympathectomized mouse hindlimb muscles. Live confocal microscopy revealed reduced fiber diameters, enhanced acetylcholine receptor turnover, and increased amounts of endo/lysosomal acetylcholine-receptor-bearing vesicles. Proteomics analysis of sympathectomized skeletal muscles showed that besides massive changes in mitochondrial, sarcomeric, and ribosomal proteins, the relative abundance of vesicular trafficking markers was affected by sympathectomy. Immunofluorescence and Western blot approaches corroborated these findings and, in addition, suggested local upregulation and enrichment of endo/lysosomal progression and autophagy markers, Rab 7 and p62, at the sarcomeric regions of muscle fibers and neuromuscular junctions. In summary, these data give novel insights into the relevance of sympathetic innervation for the homeostasis of muscle and neuromuscular junctions. They are consistent with an upregulation of endocytic and autophagic trafficking at the whole muscle level and at the neuromuscular junction.


Author(s):  
Viviana Pérez ◽  
Francisca Bermedo-Garcia ◽  
Diego Zelada ◽  
Felipe A. Court ◽  
Miguel Ángel Pérez ◽  
...  

Abstract The coordinated movement of organisms relies on efficient nerve-muscle communication at the neuromuscular junction. After peripheral nerve injury or neurodegeneration, motor neurons and Schwann cells increase the expression of the p75NTR pan-neurotrophin receptor. Even though p75NTR targeting has emerged as a promising therapeutic strategy to delay peripheral neuronal damage progression, the effects of long-term p75NTR inhibition at the mature neuromuscular junction have not been elucidated. We performed quantitative neuroanathomical analyses of the neuromuscular junction in p75NTR null mice by laser confocal and electron microscopy, which were complemented with electromyography, locomotor tests, and pharmacological intervention studies. Mature neuromuscular synapses of p75NTR null mice show impaired postsynaptic organization and ultrastructural complexity, which correlate with altered synaptic function at the levels of nerve activity-induced muscle responses, muscle fiber structure, force production, and locomotor performance. Our results on primary myotubes and denervated muscles indicate that muscle-derived p75NTR does not play a major role on postsynaptic organization. In turn, motor axon terminals of p75NTR null mice display a strong reduction in the number of synaptic vesicles and active zones. According to the observed pre and postsynaptic defects, pharmacological acetylcholinesterase inhibition rescued nerve-dependent muscle response and force production in p75NTR null mice. Our findings revealing that p75NTR is required to organize mature neuromuscular junctions contribute to a comprehensive view of the possible effects caused by therapeutic attempts to target p75NTR.


2016 ◽  
Vol 113 (31) ◽  
pp. E4494-E4503 ◽  
Author(s):  
Douglas M. Anderson ◽  
Jessica Cannavino ◽  
Hui Li ◽  
Kelly M. Anderson ◽  
Benjamin R. Nelson ◽  
...  

Innervation of skeletal muscle by motor neurons occurs through the neuromuscular junction, a cholinergic synapse essential for normal muscle growth and function. Defects in nerve–muscle signaling cause a variety of neuromuscular disorders with features of ataxia, paralysis, skeletal muscle wasting, and degeneration. Here we show that the nuclear zinc finger protein ZFP106 is highly enriched in skeletal muscle and is required for postnatal maintenance of myofiber innervation by motor neurons. Genetic disruption of Zfp106 in mice results in progressive ataxia and hindlimb paralysis associated with motor neuron degeneration, severe muscle wasting, and premature death by 6 mo of age. We show that ZFP106 is an RNA-binding protein that associates with the core splicing factor RNA binding motif protein 39 (RBM39) and localizes to nuclear speckles adjacent to spliceosomes. Upon inhibition of pre-mRNA synthesis, ZFP106 translocates with other splicing factors to the nucleolus. Muscle and spinal cord of Zfp106 knockout mice displayed a gene expression signature of neuromuscular degeneration. Strikingly, altered splicing of the Nogo (Rtn4) gene locus in skeletal muscle of Zfp106 knockout mice resulted in ectopic expression of NOGO-A, the neurite outgrowth factor that inhibits nerve regeneration and destabilizes neuromuscular junctions. These findings reveal a central role for Zfp106 in the maintenance of nerve–muscle signaling, and highlight the involvement of aberrant RNA processing in neuromuscular disease pathogenesis.


1989 ◽  
Vol 108 (5) ◽  
pp. 1833-1840 ◽  
Author(s):  
L S Musil ◽  
D E Frail ◽  
J P Merlie

Torpedo electric organ and vertebrate neuromuscular junctions contain the receptor-associated protein of the synapse (RAPsyn) (previously referred to as the 43K protein), a nonactin, 43,000-Mr peripheral membrane protein associated with the cytoplasmic face of postsynaptic membranes at areas of high nicotinic acetylcholine receptor (AChR) density. Although not directly demonstrated, several lines of evidence suggest that RAPsyn is involved in the synthesis and/or maintenance of such AChR clusters. Microscopic and biochemical studies had previously indicated that RAPsyn expression is restricted to differentiated, AChR-synthesizing cells. Our recent finding that RAPsyn is also produced in undifferentiated myocytes (Frail, D.E., L.S. Musil, a. Bonanno, and J.P. Merlie, 1989. Neuron. 2:1077-1086) led to to examine whether RAPsyn is synthesized in cell types that never express AChR (i.e., cells of other than skeletal muscle origin). Various primary and established rodent cell lines were metabolically labeled with [35S]methionine, and extracts were immunoprecipitated with a monospecific anti-RAPsyn serum. Analysis of these immunoprecipitates by SDS-PAGE revealed detectable RAPsyn synthesis in some (notably fibroblast and Leydig tumor cell lines and primary cardiac cells) but not all (hepatocyte- and lymphocyte-derived) cell types. These results were further substantiated by peptide mapping studies of RAPsyn immunoprecipitated from different cells and quantitation of RAPsyn-encoding mRNA levels in mouse tissues. RAPsyn synthesized in both muscle and nonmuscle cells was shown to be tightly associated with membranes. These findings demonstrate that RAPsyn is not specific to skeletal muscle-derived cells and imply that it may function in a capacity either in addition to or instead of AChR clustering.


2019 ◽  
Vol 11 (502) ◽  
pp. eaan5662 ◽  
Author(s):  
Shawon Lahiri ◽  
Hyejin Kim ◽  
Isabel Garcia-Perez ◽  
Musarrat Maisha Reza ◽  
Katherine A. Martin ◽  
...  

The functional interactions between the gut microbiota and the host are important for host physiology, homeostasis, and sustained health. We compared the skeletal muscle of germ-free mice that lacked a gut microbiota to the skeletal muscle of pathogen-free mice that had a gut microbiota. Compared to pathogen-free mouse skeletal muscle, germ-free mouse skeletal muscle showed atrophy, decreased expression of insulin-like growth factor 1, and reduced transcription of genes associated with skeletal muscle growth and mitochondrial function. Nuclear magnetic resonance spectrometry analysis of skeletal muscle, liver, and serum from germ-free mice revealed multiple changes in the amounts of amino acids, including glycine and alanine, compared to pathogen-free mice. Germ-free mice also showed reduced serum choline, the precursor of acetylcholine, the key neurotransmitter that signals between muscle and nerve at neuromuscular junctions. Reduced expression of genes encoding Rapsyn and Lrp4, two proteins important for neuromuscular junction assembly and function, was also observed in skeletal muscle from germ-free mice compared to pathogen-free mice. Transplanting the gut microbiota from pathogen-free mice into germ-free mice resulted in an increase in skeletal muscle mass, a reduction in muscle atrophy markers, improved oxidative metabolic capacity of the muscle, and elevated expression of the neuromuscular junction assembly genes Rapsyn and Lrp4. Treating germ-free mice with short-chain fatty acids (microbial metabolites) partly reversed skeletal muscle impairments. Our results suggest a role for the gut microbiota in regulating skeletal muscle mass and function in mice.


1999 ◽  
Vol 96 (6) ◽  
pp. 3223-3227 ◽  
Author(s):  
A. O. Gramolini ◽  
L. M. Angus ◽  
L. Schaeffer ◽  
E. A. Burton ◽  
J. M. Tinsley ◽  
...  

1998 ◽  
Vol 273 (45) ◽  
pp. 29302-29308 ◽  
Author(s):  
Fumihiko Suzuki ◽  
Masahide Goto ◽  
Chika Sawa ◽  
Seiichiro Ito ◽  
Hajime Watanabe ◽  
...  

2016 ◽  
Vol 33 (5) ◽  
pp. 1231-1244 ◽  
Author(s):  
Alvaro Perdomo-Sabogal ◽  
Katja Nowick ◽  
Ilaria Piccini ◽  
Ralf Sudbrak ◽  
Hans Lehrach ◽  
...  

1998 ◽  
Vol 12 (8) ◽  
pp. 1241-1249 ◽  
Author(s):  
Norihiko Yokomori ◽  
Masato Tawata ◽  
Tukasa Saito ◽  
Hiroki Shimura ◽  
Toshimasa Onaya

Abstract The GA-binding protein (GABP), a transcription factor with a widespread tissue distribution, consists of two subunits,α and β1, and acts as a potent positive regulator of various genes. The effect of GABP on transcription of the TSH receptor (TSHR) gene in rat FRTL-5 thyroid cells has now been investigated. Both deoxyribonuclease I footprint analysis and gel mobility-shift assays indicated that bacterially expressed glutathione S-transferase fusion proteins of GABP subunits bind to a region spanning nucleotides (nt) −116 to −80 of the TSHR gene. In gel mobility-shift assays, nuclear extracts of FRTL-5 cells and FRT cells yielded several specific bands with a probe comprising nt −116 to− 80. Supershift assays with antibodies to GABPα and to GABPβ1 showed that GABP was a component of the probe complexes formed by the nuclear extracts. Immunoblot analysis confirmed the presence of both GABP subunits in the nuclear extracts. A reporter gene construct containing the TSHR gene promoter was activated, in a dose-dependent manner, in FRTL-5 cells by cotransfection with constructs encoding both GABPα and GABPβ1. Both GABP binding to and activation of the TSHR gene promoter were prevented by methylation of CpG sites at nt −93 and− 85. These CpG sites were highly methylated (>82%) in FRT cells and completely demethylated in FRTL-5 cells, consistent with expression of the TSHR gene in the latter, but not the former. These results suggest that GABP regulates transcription of the TSHR gene in a methylation-dependent manner and that methylation of specific CpG sites and the methylation sensitivity of GABP contribute to the failure of FRT cells to express the endogenous TSHR gene.


Sign in / Sign up

Export Citation Format

Share Document