scholarly journals Differential Regulation of Foxo3a Target Genes in Erythropoiesis

2007 ◽  
Vol 27 (10) ◽  
pp. 3839-3854 ◽  
Author(s):  
Walbert J. Bakker ◽  
Thamar B. van Dijk ◽  
Martine Parren-van Amelsvoort ◽  
Andrea Kolbus ◽  
Kazuo Yamamoto ◽  
...  

ABSTRACT The cooperation of stem cell factor (SCF) and erythropoietin (Epo) is required to induce renewal divisions in erythroid progenitors, whereas differentiation to mature erythrocytes requires the presence of Epo only. Epo and SCF activate common signaling pathways such as the activation of protein kinase B (PKB) and the subsequent phosphorylation and inactivation of Foxo3a. In contrast, only Epo activates Stat5. Both Foxo3a and Stat5 promote erythroid differentiation. To understand the interplay of SCF and Epo in maintaining the balance between renewal and differentiation during erythroid development, we investigated differential Foxo3a target regulation by Epo and SCF. Expression profiling revealed that a subset of Foxo3a targets was not inhibited but was activated by Epo. One of these genes was Cited2. Transcriptional control of Epo/Foxo3a-induced Cited2 was studied and compared with that of the Epo-repressed Foxo3a target Btg1. We show that in response to Epo, the allegedly growth-inhibitory factor Foxo3a associates with the allegedly growth-stimulatory factor Stat5 in the nucleus, which is required for Epo-induced Cited2 expression. In contrast, Btg1 expression is controlled by the cooperation of Foxo3a with cyclic AMP- and Jun kinase-dependent Creb family members. Thus, Foxo3a not only is an effector of PKB but also integrates distinct signals to regulate gene expression in erythropoiesis.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1169-1169
Author(s):  
Julie A. Lambert ◽  
Nicolas Goardon ◽  
Patrick Rodriguez ◽  
Sabine Herblot ◽  
Pierre Thibault ◽  
...  

Abstract As highly proliferative erythroid progenitors commit to terminal differentiation, they also progressively undergo growth arrest. To determine the mechanisms underlying the appropriate timing of erythroid gene expression and those associated with growth cessation, we analyzed the dynamical composition of the multiprotein complex nucleated by the bHLH transcription factor SCL, a crucial regulator of erythropoiesis that absolutely requires interaction with other factors to activate transcription. In progenitor cells, the SCL complex marks a subset of erythroid specific genes (alpha-globin, P4.2, glycophorin A) that are transcribed later in differentiating cells, conducting cells toward terminal maturation. To unravel the regulation of transcription by SCL, we used tagging/proteomics approaches in two differentiation-inducible erythroid cell lines, coupled with binding assays to immobilized DNA templates and chromatin immunoprecipitation. Our analyses reveal that the core complex comprised of known proteins (SCL, GATA-1, LMO2, Ldb1 and E2A) and two additional E protein family members, HEB and E2-2, did not change with differentiation. Strikingly, this complex recruits HDAC1-2 in undifferentiated cells which were exchanged with TRRAP, a chromatin remodelling factor, upon differentiation, suggesting an epigenetic regulation of erythroid differentiation mediated by the core SCL complex. Finally, we identified the corepressor ETO2 targeted via this complex through direct interaction with E2A/HEB. In vivo, ETO2 represses the transcription of SCL target genes both in transient assays and in chromatin. During erythroid differentiation, ETO2 remains associated with the SCL complex bound to erythroid promoters. However, the stoichiometry of ETO2 and SCL/HEB changes as SCL and HEB levels increase with erythroid differentiation, both in nuclear extracts and on DNA. To determine the functional consequence of this imbalance in activator to co-repressor ratio, we delivered ETO2 siRNA in primary hematopoietic cells and found an accelerated onset of SCL target genes on induction of erythroid differentiation, and conversely, these genes were decreased following ectopic ETO2 expression. Strikingly, inhibition of ETO2 expression in erythroid progenitors arrests cell proliferation, indicating that ETO2 is required for their expansion. We therefore analyzed gene expression in purified erythroid progenitors and differentiating erythroid cells (E1-E5) and found an inverse correlation between the mRNA levels of ETO2 and cyclin-dependent kinase inhibitors. Moreover, ETO2 siRNA treatment of primary erythroid progenitors results in increased p21 CDKI and Gfi1b expression, as assessed by real-time PCR. Finally, we show by chromatin immunoprecipitation that Gfi-1b, p21 and p27, are direct targets of the SCL- ETO2 complex. We therefore conclude that ETO2 regulates the erythroid lineage fate by repressing SCL marked erythroid genes in undifferentiated cells, and by controlling the expansion of erythroid progenitors. Our study elucidates the dual function of ETO2 in the erythroid lineage and sheds light on epigenetic mechanisms coordinating red blood cell proliferation and differentiation.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4256-4256
Author(s):  
Yuichi Ishikawa ◽  
Manami Maeda ◽  
Min Li ◽  
Sung-Uk Lee ◽  
Julie Teruya Feldstein ◽  
...  

Abstract Abstract 4256 Clathrin assembly lymphoid myeloid leukemia protein (CALM, also known as PICALM) is ubiquitously expressed in mammalian cells and implicated in clathrin dependent endocytosis (CDE). The CALM gene is the target of the t(10;11)(p13;q14-21) translocation, which is rare, but recurrently observed mutation in multiple types of acute leukemia. While the resultant CALM/AF10 fusion gene could act as an oncogene in vitro and in vivo in animal models, molecular mechanisms by which the fusion protein exerts its oncogenic activity remains elusive. Since CDE is implicated in the regulation of growth factor/cytokine signals, we hypothesized that the CALM/AF10 fusion oncoprotein could affect normal Calm function, leading to leukemogenesis. To determine the role of CALM and CDE in normal hematopoiesis, we generated and characterized both conventional (Calm+/−) and conditional (CalmF/F Mx1Cre+) Calm knockout mutants. While we didn't observe a gross defect in the heterozygous mutant (Calm+/−), homozygous deletion of the Calm gene (Calm-/-) resulted in late embryonic lethality. Total numbers of fetal liver (FL) cells were significantly reduced in Calm-/-embryos compared to that of control due to inefficient erythropoiesis. Proportions of mature erythroblasts (CD71-Ter119+) in FL were significantly reduced in the absence of the Calm gene. Furthermore, Calm deficient Megakaryocyte-Erythroid Progenitors (MEPs) gave rise to less CFU-E colonies when seeded in methyl cellulose plates, suggesting that Calm is required for terminal erythroid differentiation in a cell autonomous manner. To determine the role of Calm in adult hematopoiesis, we analyzed peripheral blood (PB), bone marrow (BM) and spleen of CalmF/F Mx1Cre+ mice after pIpC injection. CalmF/F Mx1Cre+ mice demonstrated hypochromic anemia, T-lymphocytopenia and thrombocytosis one month after pIpC injection. Levels of plasma transferrin and ferritin were intact in CalmF/F Mx1Cre+ mice, while plasma iron levels were increased, indicating that iron uptake is impaired in Calm deficient erythroblasts. We observed significant reduction of mature erythroblasts and erythrocytes in both BM and spleen with concomitant increase of immature erythroblasts (CD71+Ter119+) in CalmF/F Mx1Cre+ mice. The increased population mainly consists of CD71+Ter119+CD44+FSCdim polychromatophilic erythroblasts, and Benzidine staining of PB and splenic erythroblasts revealed reduced hemoglobinization in Calm deficient erythroblasts. To examine the global changes in transcriptome of CD71+Ter119+CD44+FSCdim polychromatophilic erythroblasts with or without the Calm gene, we compared mRNA expression profile by gene chip microarray analysis. Over 400 genes, including genes associated with iron metabolism and CDE pathway, were up- or down-regulated more than 1.5-fold in Calm deficient polychromatophilic erythroblasts as compared to control. Genes Set Enrichment Analysis (GSEA) revealed that multiple metabolic pathways were downregulated in Calm deficient polychromatophilic erythroblasts. Calm deficient CD71+Ter119+CD44+FSCdim polychromatophilic erythroblasts demonstrated a defect in cellular proliferation revealed by cell cycle analysis. Transferrin receptor 1 (TFR1, CD71) is highly expressed in rapidly dividing cells and erythroblasts, and uptake of iron-bound transferrin through TFR1 is the main pathway of iron intake to erythroid precursors. Since CDE is implicated in TFR1 endocytosis, we next examined surface expression levels of CD71 in Calm deficient erythroid progenitors and erythroblasts. While CD71 is normally expressed at low level in early stage of megakaryo/erythroid progenitors and highly expressed in CFU-E through polychromatophilic erythroblasts, its expression was dramatically up-regulated throughout the erythroid development in CalmF/F Mx1Cre+ mice. Up-regulation of surface CD71 expression was also evident in K562 erythroid leukemia cell lines upon ShRNA-mediated CALM knockdown. Taken together, our data indicate that CALM plays an essential role in terminal erythroid differentiation via regulating TFR1 endocytosis. Since iron is required for both erythroblast proliferation and hemoglobinization, Calm deficiency significantly impacts erythroid development at multiple levels. Disclosures: Naoe: Chugai Pharm. Co.: Research Funding; Zenyaku-Kogyo Co.: Research Funding; Kyowa-Kirin Co.: Research Funding; Dainippon-Sumitomo Pharm. Co.: Research Funding; Novartis Pharm. Co.: Research Funding; Janssen Pharm. Co.: Research Funding.


2005 ◽  
Vol 25 (12) ◽  
pp. 5205-5214 ◽  
Author(s):  
Roy Drissen ◽  
Marieke von Lindern ◽  
Andrea Kolbus ◽  
Siska Driegen ◽  
Peter Steinlein ◽  
...  

ABSTRACT Development of red blood cells requires the correct regulation of cellular processes including changes in cell morphology, globin expression and heme synthesis. Transcription factors such as erythroid Krüppel-like factor EKLF (Klf1) play a critical role in erythropoiesis. Mice lacking EKLF die around embryonic day 14 because of defective definitive erythropoiesis, partly caused by a deficit in β-globin expression. To identify additional target genes, we analyzed the phenotype and gene expression profiles of wild-type and EKLF null primary erythroid progenitors that were differentiated synchronously in vitro. We show that EKLF is dispensable for expansion of erythroid progenitors, but required for the last steps of erythroid differentiation. We identify EKLF-dependent genes involved in hemoglobin metabolism and membrane stability. Strikingly, expression of these genes is also EKLF-dependent in primitive, yolk sac-derived, blood cells. Consistent with lack of upregulation of these genes we find previously undetected morphological abnormalities in EKLF-null primitive cells. Our data provide an explanation for the hitherto unexplained severity of the EKLF null phenotype in erythropoiesis.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 388-388
Author(s):  
Youngjin Choi ◽  
Kamaleldin E. Elagib ◽  
Adam N. Goldfarb

Abstract AML1-ETO (A/E) is the fusion product of a chromosomal translocation, t(8;21) frequently associated with FAB M2 acute myeloid leukemia (AML). The fusion combines the runt domain of the hematopoietic transcription factor RUNX1 with almost the entire transcriptional repressor ETO. Clinical cases of AML with t(8;21) are distinguished by blockade in erythroid differentiation. In addition, enforced expression of A/E in primary human erythroid progenitors impairs differentiation. Existing paradigms postulate that A/E exerts its leukemogenic effects through recruitment to RUNX binding sites of cofactors such as corepressors, histone deacetylases (HDACs), and DNA methyltransferases (DNMTs), causing repression of RUNX target genes. However, this paradigm fails to explain effects of A/E on erythropoiesis as erythroid genes generally lack functional RUNX sites. We have published a physical and functional interplay between RUNX1 and the erythroid master regulator GATA-1 (Blood 101:4333). Furthermore, A/E physically interacted and functionally interfered with GATA-1. In the current studies we have examined domain and cofactor requirements for A/E inhibition both of GATA-1 function and of erythroid differentiation. Deletional mutagenesis of A/E demonstrated that the zinc finger (NH4) and runt domains were absolutely required for GATA-1 inhibition. Treatment with HDAC and DNMT inhibitors failed to affect A/E repression of GATA-1. RNAi knockdown of all known NH4 interactors, HDACs 1-3, N-CoR, SMRT-A, and SMRT-B also failed to affect A/E inhibition of GATA-1. Inducible expression of A/E in MEL cells caused downregulation of endogenous GATA-1 protein and mRNA, an effect dependent on induction of erythroid differentiation. A coexpressed GATA-1-GFP fusion showed downregulation with identical kinetics to endogenous GATA-1. Interestingly, proteasome-specific inhibitors effectively prevented the downregulation of endogenous GATA-1 and GATA-1-GFP caused by induction of A/E coupled with erythroid differentiation. Fluorescence microscopy showed a striking relocation of GATA-1-GFP from the nucleus to discrete, paranuclear bodies upon joint induction of A/E expression and erythroid differentiation. Our findings indicate that A/E inhibition of GATA-1 occurs through a previously undescribed mechanism that involves GATA-1 redistribution to novel cellular structures followed by proteasome-mediated degradation. These findings expand the paradigm of A/E leukemogenicity to include a non-transcriptional mechanism in which a growth inhibitor/tumor suppressor, GATA-1, is targeted by A/E for proteolytic degradation in a manner reminiscent of human papilloma virus E6 targeting of p53 for degradation in cervical carcinogenesis.


Blood ◽  
2010 ◽  
Vol 116 (12) ◽  
pp. 2141-2151 ◽  
Author(s):  
Benjamin Drogat ◽  
Joanna Kalucka ◽  
Laura Gutiérrez ◽  
Hamida Hammad ◽  
Steven Goossens ◽  
...  

Abstract To determine the role of vascular endothelial growth factor (Vegf) in embryonic erythroid development we have deleted or overexpressed Vegf specifically in the erythroid lineage using the EpoR-iCre transgenic line in combination with Cre/loxP conditional gain and loss of function Vegf alleles. ROSA26 promoter-based expression of the Vegf164 isoform in the early erythroid lineage resulted in a differentiation block of primitive erythroid progenitor (EryP) development and a partial block in definitive erythropoiesis between the erythroid burst-forming unit and erythroid colony-forming unit stages. Decreased mRNA expression levels of the key erythroid transcription factor Gata1 were causally linked to this phenotype. Conditional deletion of Vegf within the erythroid lineage was associated with increased Gata1 levels and increased erythroid differentiation. Expression of a ROSA26-based GATA2 transgene rescued Gata1 mRNA levels and target genes and restored erythroid differentiation in our Vegf gain of function model. These results demonstrate that Vegf modulates Gata1 expression levels in vivo and provides new molecular insight into Vegf's ability to modulate erythropoiesis.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2527-2527
Author(s):  
Ana Catarina Menezes ◽  
Steven Knapper ◽  
Richard L Darley ◽  
Alex Tonks

A common abnormality in AML (observed at a frequency of ~12%) is the t(8;21)(q22;q22) encoding the RUNX1-ETO fusion protein. Previously we showed that RUNX1-ETO can block the differentiation of normal human primary CD34+ hematopoietic stem progenitor cells (HSPC) and promote their self-renewal (consistent with its putative initiating role; Tonks et al 2003, 2004). To identify the genes that may mediate this phenotype, transcriptome analysis was performed (Tonks et al 2007). We now report that RUNX1-ETO significantly downregulates the expression of RUNX3 (2.1±0.6 fold in CD34+ HSPC; p<0.05). Furthermore, we also show that RUNX3 mRNA is significantly downregulated in t(8;21) patients compared to normal human bone marrow by 4 fold (p<0.001). Interestingly, in non-t(8;21) AML, RUNX3 expression is overexpressed compared with normal HSC, suggesting that both down and upregulation of RUNX3 may contribute to the pathogenesis of AML. To investigate this further, we examined the impact of RUNX3 expression on normal human hematopoiesis. Initially, we investigated the role of RUNX3 in erythropoiesis (which is severely disrupted by RUNX1-ETO). We mimicked the effects of RUNX1-ETO through shRNA-mediated knockdown (KD) of RUNX3 in CD34+ HSPC which co-expressed GFP. Following infection, GFP+ CD13low cells were isolated by FACS to yield a population of cells enriched for erythroid progenitors. Under clonal conditions, RUNX3-KD cells formed significantly less erythroid colonies than control (1.9±0.7 fold, p<0.05), matching the impairment seen in erythroid progenitors expressing RUNX1-ETO. To examine this phenotype in more detail, we studied the effect of RUNX3-KD on the EPO-independent and EPO-dependent stages of erythroid development. RUNX3-KD significantly inhibited growth during the EPO-independent development (suppressed by 1.7±0.1 fold; p<0.001) and showed impaired differentiation with reduced CD36 expression (1.5±0.3 fold, p<0.01), retention of HLA-DR (1.2±0.1 fold, p<0.01) and CD34 (1.2±0.1 fold, p<0.05). These cells showed partial response to EPO but again growth response was suppressed (2±0.8 fold compared to control). Developmentally, RUNX3-KD cells failed to upregulate GlyA to the same levels as controls (suppressed by 1.3±0.1 fold p<0.05), suggesting that the inhibition of differentiation persisted in the EPO-dependent phase of development. In summary, KD of RUNX3 in HSPC leads to an impairment in erythropoiesis similar to the phenotype induced by RUNX1-ETO, which suggests that suppression of RUNX3 by this fusion protein contributes to the RUNX1-ETO phenotype. We next assessed the effect of RUNX3 overexpression on erythroid development as above, this time using retrovirus co-expressing RUNX3 and DsRed. Interestingly, RUNX3 overexpression also suppressed erythroid colony formation by 1.7±0.7 fold (p<0.01) compared to control, however, in a serial replating strategy, RUNX3 cells were able to form 2.7±0.6 fold more erythroid colonies than control, which suggests that RUNX3 promotes self-renewal. In the EPO-independent phase of development RUNX3 overexpression significantly inhibited the growth of erythroid progenitors by 2.7±1.3 fold (p<0.05), possibly arising from reduced erythroid commitment (CD36+CD13neg reduced by 1.5±0.2 fold, p<0.01). Erythroid committed cells showed a greater proliferative response to EPO (4.6±2.8 fold greater than controls) and showed phenotypic evidence of inhibition of development: decreased expression of GlyA (suppressed by 1.3±0.1 fold, p<0.01), retention of CD36 (1.4±0.2 fold, p<0.05) and 20% increased cell size (p<0.05) compared to controls. Morphologically, these cells appeared to be blocked in an early/intermediate stage of development. These data imply that RUNX3 overexpression impairs erythroid differentiation and blocks terminal differentiation. Overall, these results show that both the overexpression and KD of RUNX3 in normal HSPC leads to a block in erythroid differentiation. Further, our preliminary data suggests that ectopic expression of RUNX3 in CD34+ HSPC selectively inhibits granulocytic development. These experimental models indicate that the level of RUNX3 expression is an important regulator of normal human hematopoietic development. We are currently determining the underlying mechanisms by which RUNX3 perturbs normal hematopoiesis, which ultimately may lead to new therapies for AML patients. Disclosures Knapper: Daiichi Sankyo: Honoraria; Jazz: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Pfizer: Membership on an entity's Board of Directors or advisory committees; Tolero: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4234-4234
Author(s):  
Stephane Durual ◽  
Alexandra Rideau ◽  
Maciej Wiznerowics ◽  
Sylvie Ruault ◽  
Photis Beris ◽  
...  

Abstract PU.1 is one of the best-studied transcription factors governing hematopoiesis and has been shown to regulate positively differentiation of B-lymphocytes and granulocytes. PU.1 is also expressed in early erythroid progenitors and its interaction with GATA-1 was described to directly inhibit erythroid differentiation, since GATA-1 is the key regulator of erythropoiesis. In addition, the binding of GATA-1 to PU.1 was found to repress PU.1 dependent myeloid gene expression. In order to study more in detail the effect of PU.1 in primary human hematopoietic cell differentiation, we designed lentiviral vectors which allow PU.1 overexpression and PU.1 inhibition. For PU.1 overexpression, we cloned the PU.1 cDNA into the pWPIR-ires-GFP bicistronic plasmid and verified by transient transfection in 293T cells the production of PU.1 mRNA and of right sized protein. We analyzed PU.1 function by co-transfection assays into 293T cells using the pWPIR-PU.1 vector and CAT reporter genes governed by PU.1 responsive elements. By CAT ELISA assay we observed a dramatic increase in OD. The production of PU.1 mRNA and protein in Hela cells was verified by stable transduction with complete lentivectors. For PU.1 inhibition, we constructed a lentiviral vector encoding a siRNA specific for PU.1. After transduction of the K562 erythroleukemic cell line, both PU.1 mRNA and protein became undetectable, as verified by RT-PCR and Western blot, respectively, whereas GATA-1 mRNA and protein expression remained unchanged. We tested both viral constructs in an in vitro culture system, in which CD34+ hematopoietic precursors obtained from bone marrow aspirates, differentiate into mature red cells under the influence of SCF, IL-3 and Epo or into mature granulocytes by stimulation with thrombopoietin, SCF and Flt-3L. Results for cultures with PU.1 transduced cells showed inhibition of erythroid cell differentiation by 40% ± 10% (mean of three experiments) and increased myeloid proliferation, whereas cultures with siPU.1 transduced cells showed no influence on erythroid cells and strong decrease of myeloid cell proliferation (50 – 60x) and differentiation (90 % decrease of CD13+ cells). In conclusion, our model gives us the opportunity to test the function of PU.1 overexpression and/or inhibition in primary hematopoietic cells, to test the effect on target genes in various stages of differentiating precursors and the interaction with other transcription factors like GATA-1, and to analyze pathologic conditions like some forms of acute myeloid leukemia, where PU.1 was described to be mutated or downregulated.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1182-1182
Author(s):  
Tina M Schnoeder ◽  
Patricia Arreba-Tutusaus ◽  
Inga Griehl ◽  
Lars Bullinger ◽  
Konstanze Doehner ◽  
...  

Abstract Erythropoiesis is a multi-step process in which the development of red blood cells occurs through expansion and differentiation of hematopoietic stem cells (HSCs) into more committed progenitors and finally into erythrocytes. Erythropoietin (Epo) is strictly required for erythropoiesis as it promotes survival and late maturation. In vivo and in vitro studies have pointed out the major role of erythropoietin receptor (EpoR) signalling through JAK2 tyrosine-kinase and STAT5a/b as a central regulator of erythropoiesis. STAT5a/b is essential in regulating early erythroblast survival, however, with regard to differentiation of erythroid progenitors current data are not definitive in establishing a critical, non-redundant role. Phospholipase C gamma 1 (PLCγ1) is known to act as key mediator of calcium-signalling that can substitute for PI3K/AKT in oncogenic models. Interestingly, genetic deletion of murine PLCγ1 in embryonic development using a conventional knockout mouse model resulted in lethality at E9.0 due to generalized growth failure and there was absence of erythrogenesis and vasculogenesis. Here, we revisited the role of Plcγ1 and investigated its function in signalling, differentiation and transcriptomic/epigenetic regulation of erythropoiesis: Upon Epo stimulation, we were able to demonstrate that Plcγ1 is a downstream target of EpoR/Jak2 signalling in lymphoid (Ba/F3) and myeloid (32D) progenitor cell lines (both transfected with EpoR and Jak2-WT) and in a erythroid progenitor (I/11) cell line. In order to specifically assess its role in erythroid development downstream of the EpoR-Jak2 axis, we focused on the murine pro-erythroblast cell line I/11 which is able to differentiate upon dexamethasone-/stem cell factor-withdrawal combined with erythropoietin stimulation. Interestingly, knockdown of Plcγ1 led to a dramatic delay (scr CD44high 21% vs. Plcγ1 shRNA CD44high 64%, p=0.02) in erythroid differentiation and accumulation of immature erythroid progenitors as assessed by flow cytometry technology. Knockdown of Plcγ1 did alter neither proliferation of cells nor the cell cycle distribution and activation of other EpoR downstream molecules as Stat5, Mek and Akt was not impaired. In addition, we analysed the colony-forming potential of Plcγ1-deficient I/11 and fetal liver cells (FLC) compared to controls. Colony formation was dramatically impaired in both - I/11 (scr 138 vs. Plcγ1 shRNA 32, p=0.03) and primary FLC (scr 107 vs. Plcγ1 shRNA 28, p<0.001) - when compared to control cells. Flow cytometry analysis of the colonies revealed a higher amount of immature populations (CD44high, KIT+) in PLCγ1-deficient cells as compared to controls whereas the content of TER119+ cells, reflecting more mature erythroid cells, was higher in controls. To elucidate on the mechanism of Plcγ1-mediated regulation of erythroid development, we performed global gene expression analysis in I/11 cells at various time points of differentiation after knockdown of Plcγ1. Several of the genes that change expression in the absence of Plcγ1 can be classified as transcription/co-transcription factors, epigenetic regulators, metabolic factors or adaptor molecules involved in intracellular signaling. Thus, Plcγ1-deficient cells showed up-regulation of the transcription factor RUNX1 and the adaptor molecule GRAP2 over time compared to controls whereas the epigenetic regulator H2AFY2 was significantly decreased. Stimulated by our observation that profound changes in global gene expression also included the epigenetic machinery (H2afy2), we speculated whether Plcγ1 signalling also modifies the global epigenetic landscape of I/11 pro-erythroblasts. Therefore, we performed genome-wide DNA methylome analysis in I/11 cells upon Plcγ1 knockdown using MCIP-seq (methyl-CpG immunoprecipitation combined with next-generation sequencing). The observed methylation changes were by far dominated by an apparent hypomethylation of differentially methylated regions (DMRs) in Plcγ1 knockdown cells as compared to control cells. In line with this, gene ontology analysis of DMRs revealed a highly significant enrichment of biological terms associated with developmental processes and cell differentiation. Taken together, our findings provide evidence for an essential role of Plcγ1 in regulating erythroid differentiation through alteration of the transcriptomic and epigenetic landscape. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 417-417
Author(s):  
Grant C. Bullock ◽  
Lorrie L Delehanty ◽  
Anne-Laure Talbot ◽  
Chante Richardson ◽  
Kamaleldin E Elagib ◽  
...  

Abstract Erythropoietin (Epo) signaling drives normal erythropoiesis by promoting the survival, proliferation and maturation of committed erythroid progenitor cells. Epo acts at an early stage in erythroid development, prior to the initiation of hemoglobin synthesis. Under conditions of iron restriction, erythroid progenitors become refractory to Epo, resulting in hypoplastic anemia. The resulting iron restriction checkpoint protects iron stores from depletion by preventing Epo-driven erythroid expansion and inappropriate iron utilization for hemoglobin synthesis. In addition to diminished body stores, defects in iron uptake or intracellular trafficking can also activate this checkpoint and contribute to Epo-refractory anemias, e.g. sideroblastic anemias. Our previous work using primary human hematopoietic cultures had implicated aconitase enzymes, which interconvert citrate and isocitrate, as critical regulators of the erythroid iron-restriction checkpoint. In those studies, supplying cells with isocitrate had completely abrogated the block in erythroid development caused by iron restriction. In the current studies, we examine the mechanism for isocitrate rescue of erythropoiesis in iron deprived human progenitors and determine the in vivo effects of isocitrate administration in mice with iron deficiency anemia. Initial experiments addressed whether the activity of isocitrate was due to its catabolism to yield ATP and succinyl CoA, a precursor of heme. Several independent findings argued against such a metabolic mechanism. Firstly, erythroid progenitors showed no changes in cellular [ATP] with iron deprivation −/+ isocitrate. Secondly, a bioactive analog of alpha-ketoglutarate, TaKG, failed to rescue erythropoiesis under iron deprivation. Thirdly, isocitrate promoted erythroid differentiation in progenitors with blockade in mitochondrial biogenesis, induced by chloramphenicol. In these last studies, isocitrate reversed chloramphenicol inhibition of glycophorin A and globin expression; exogenous hemin by contrast reversed only the inhibition of globin expression. The combination of isocitrate and hemin, however, showed strong synergy in the rescue of growth and globin expression in cholaramphenicol treated progenitors. Subsequent experiments tested the hypothesis that isocitrate functions as a second messenger in erythroid development. Accordingly, iron deprived erythroid progenitors exposed to a range of Epo levels (0.05–20 U/ml) underwent isocitrate treatment. Remarkably, isocitrate showed no rescue of iron deprived erythroid cultures with 0.05 U/ml Epo, a dose that still promotes erythroid differentiation in high iron cultures. Partial rescue was obtained with 0.2 U/ml Epo, and complete rescue with &gt; 4.5 U/ml. Previous studies have suggested that Epo-mediated calcium signaling shows a strong dosage dependency, requiring relatively high doses of Epo to activate calcium influx. In human CD34+ progenitors exposed to 4.5 U/ml Epo for either 5 hours or 3 days, iron deprivation induced a drop in steady state intracellular calcium levels. Inclusion of isocitrate in the medium restored the intracellular calcium to the levels seen in the iron-replete cultures. Finally, the in vivo activity of isocitrate was assessed in a murine model of iron deficiency anemia. Strikingly, intraperitoneal injections of isocitrate (200 mg/kg/day for 5 days) significantly augmented the red cell counts in C57BL/6 weanlings subjected to a low iron diet: mean RBC of 9.3 ± 0.35 × 10e12 cells/liter for the isocitrate group compared to an average RBC of 7.4 ± 0.51 × 10e12 cells/liter for the saline control group (P=0.012, N = 6 for each group). Interestingly, this increase accompanied a parallel decrease in red cell mean corpuscular hemoglobin concentration. Taken together, our results suggest a role for isocitrate as a second messenger coupled to Epo signaling and potentially involved in intracellular calcium regulation. In vivo administration abrogates the iron restriction checkpoint on red cell production, as in ex vivo studies, but cannot drive hemoglobin synthesis in the face of limited iron stores. The ability of isocitrate to collaborate with hemin in overriding erythroid mitochondrial defects offers novel therapeutic avenues for sideroblastic anemias.


Blood ◽  
2020 ◽  
Author(s):  
Salomé Le Goff ◽  
Ismael Boussaid ◽  
Celia Floquet ◽  
Anna Raimbault ◽  
Isabelle Hatin ◽  
...  

The role of ribosome biogenesis in erythroid development is supported by the recognition of erythroid defects in ribosomopathies in both Diamond-Blackfan anemia and 5q- syndrome. Whether ribosome biogenesis exerts a regulatory function on normal erythroid development is still unknown. In the present study, a detailed characterization of ribosome biogenesis dynamics during human and murine erythropoiesis shows that ribosome biogenesis is abruptly interrupted by the drop of rDNA transcription and the collapse of ribosomal protein neo-synthesis. Its premature arrest by RNA polI inhibitor, CX-5461 targets the proliferation of immature erythroblasts. We also show that p53 is activated spontaneously or in response to CX-5461 concomitantly to ribosome biogenesis arrest, and drives a transcriptional program in which genes involved in cell cycle arrest, negative regulation of apoptosis and DNA damage response were upregulated. RNA polI transcriptional stress results in nucleolar disruption and activation of ATR-CHK1-p53 pathway. Our results imply that the timing of ribosome biogenesis extinction and p53 activation are crucial for erythroid development. In ribosomopathies in which ribosome availability is altered by unbalanced production of ribosomal proteins, the threshold of ribosome biogenesis down-regulation could be prematurely reached and together with pathological p53 activation prevents a normal expansion of erythroid progenitors.


Sign in / Sign up

Export Citation Format

Share Document