scholarly journals CCAAT/Enhancer-Binding Protein Homologous Protein (CHOP) Regulates Osteoblast Differentiation

2006 ◽  
Vol 26 (16) ◽  
pp. 6105-6116 ◽  
Author(s):  
Ken Shirakawa ◽  
Shingo Maeda ◽  
Tomomi Gotoh ◽  
Makoto Hayashi ◽  
Kenichi Shinomiya ◽  
...  

ABSTRACT Differentiation of committed osteoblasts is controlled by complex activities involving signal transduction and gene expression, and Runx2 and Osterix function as master regulators for this process. Recently, CCAAT/enhancer-binding proteins (C/EBPs) have been reported to regulate osteogenesis in addition to adipogenesis. However, the roles of C/EBP transcription factors in the control of osteoblast differentiation have yet to be fully elucidated. Here we show that C/EBP homologous protein (CHOP; also known as C/EBPζ) is expressed in bone as well as in mesenchymal progenitors and primary osteoblasts. Overexpression of CHOP reduces alkaline phosphatase activity in primary osteoblasts and suppresses the formation of calcified bone nodules. CHOP-deficient osteoblasts differentiate more strongly than their wild-type counterparts, suggesting that endogenous CHOP plays an important role in the inhibition of osteoblast differentiation. Furthermore, endogenous CHOP induces differentiation of calvarial osteoblasts upon bone morphogenetic protein (BMP) treatment. CHOP forms heterodimers with C/EBPβ and inhibits the DNA-binding activity as well as Runx2-binding activity of C/EBPβ, leading to inhibition of osteocalcin gene transcription. These findings indicate that CHOP acts as a dominant-negative inhibitor of C/EBPβ and prevents osteoblast differentiation but promotes BMP signaling in a cell-type-dependent manner. Thus, endogenous CHOP may have dual roles in regulating osteoblast differentiation and bone formation.

1997 ◽  
Vol 138 (6) ◽  
pp. 1207-1217 ◽  
Author(s):  
Hélène Boeuf ◽  
Charlotte Hauss ◽  
Fabienne De Graeve ◽  
Nathalie Baran ◽  
Claude Kedinger

STAT transcription factors are induced by a number of growth factors and cytokines. Within minutes of induction, the STAT proteins are phosphorylated on tyrosine and serine residues and translocated to the nucleus, where they bind to their DNA targets. The leukemia inhibitory factor (LIF) mediates pleiotropic and sometimes opposite effects both in vivo and in cultured cells. It is known, for example, to prevent differentiation of embryonic stem (ES) cells in vitro. To get insights into LIF-regulated signaling in ES cells, we have analyzed protein-binding and transcriptional properties of STAT recognition sites in ES cells cultivated in the presence and in the absence of LIF. We have detected a specific LIF-regulated DNA-binding activity implicating the STAT3 protein. We show that STAT3 phosphorylation is essential for this LIF-dependent DNA-binding activity. The possibility that ERK2 or a closely related protein kinase, whose activity is modulated in a LIF-dependent manner, contributes to this phosphorylation is discussed. Finally, we show that the multimerized STAT3-binding DNA element confers LIF responsiveness to a minimal thymidine kinase promoter. This, together with our observation that overexpression of STAT3 dominant-negative mutants abrogates this LIF responsiveness, clearly indicates that STAT3 is involved in LIF-regulated transcriptional events in ES cells. Finally, stable expression of such a dominant negative mutant of STAT3 induces morphological differentiation of ES cells despite continuous LIF supply. Our results suggest that STAT3 is a critical target of the LIF signaling pathway, which maintains pluripotent cell proliferation.


Development ◽  
2002 ◽  
Vol 129 (11) ◽  
pp. 2761-2772
Author(s):  
Ann K. Corsi ◽  
Thomas M. Brodigan ◽  
Erik M. Jorgensen ◽  
Michael Krause

Twist is a transcription factor that is required for mesodermal cell fates in all animals studied to date. Mutations of this locus in humans have been identified as the cause of the craniofacial disorder Saethre-Chotzen syndrome. The Caenorhabditis elegans Twist homolog is required for the development of a subset of the mesoderm. A semidominant allele of the gene that codes for CeTwist, hlh-8, has defects that occur earlier in the mesodermal lineage than a previously studied null allele of the gene. The semidominant allele has a charge change (E29K) in the basic DNA-binding domain of CeTwist. Surprisingly, the mutant protein retains DNA-binding activity as both a homodimer and a heterodimer with its partner E/Daughterless (CeE/DA). However, the mutant protein blocks the activation of the promoter of a target gene. Therefore, the mutant CeTwist may cause cellular defects as a dominant negative protein by binding to target promoters as a homo- or heterodimer and then blocking transcription. Similar phenotypes as those caused by the E29K mutation were observed when amino acid substitutions in the DNA-binding domain that are associated with the human Saethre-Chotzen syndrome were engineered into the C. elegans protein. These data suggest that Saethre-Chotzen syndrome may be caused, in some cases, by dominant negative proteins, rather than by haploinsufficiency of the locus.


2007 ◽  
Vol 292 (1) ◽  
pp. C216-C226 ◽  
Author(s):  
Wei Wei ◽  
Hongmei Yang ◽  
Michael Menconi ◽  
Peirang Cao ◽  
Chester E. Chamberlain ◽  
...  

The role of the proteasome in the regulation of cellular levels of the transcription factor CCAAT/enhancer-binding protein β (C/EBPβ) is poorly understood. We tested the hypothesis that C/EBPβ levels in cultured myotubes are regulated, at least in part, by proteasome activity. Treatment of cultured L6 myotubes, a rat skeletal muscle cell line, with the specific proteasome inhibitor β-lactone resulted in increased nuclear levels of C/EBPβ as determined by Western blotting and immunofluorescent detection. This effect of β-lactone reflected inhibited degradation of C/EBPβ. Surprisingly, the increased C/EBPβ levels in β-lactone-treated myotubes did not result in increased DNA-binding activity. In additional experiments, treatment of the myotubes with β-lactone resulted in increased nuclear levels of growth arrest DNA damage/C/EBP homologous protein (Gadd153/CHOP), a dominant-negative member of the C/EBP family that can form heterodimers with other members of the C/EBP family and block DNA binding. Coimmunoprecipitation and immunofluorescent detection provided evidence that C/EBPβ and Gadd153/CHOP interacted and colocalized in the nuclei of the β-lactone-treated myotubes. When Gadd153/CHOP expression was downregulated by transfection of myotubes with siRNA targeting Gadd153/CHOP, C/EBPβ DNA-binding activity was restored in β-lactone-treated myotubes. The results suggest that C/EBPβ is degraded by a proteasome-dependent mechanism in skeletal muscle cells and that Gadd153/CHOP can interact with C/EBPβ and block its DNA-binding activity. The observations are important because they increase the understanding of the complex regulation of the expression and activity of C/EBPβ in skeletal muscle.


2006 ◽  
Vol 282 (7) ◽  
pp. 4983-4993 ◽  
Author(s):  
Nandini Ghosh-Choudhury ◽  
Chandi Charan Mandal ◽  
Goutam Ghosh Choudhury

Lovastatin promotes osteoblast differentiation by increasing bone morphogenetic protein-2 (BMP-2) expression. We demonstrate that lovastatin stimulates tyrosine phosphorylation of the p85 regulatory subunit of phosphatidylinositol 3-kinase (PI3K), leading to an increase in its kinase activity in osteoblast cells. Inhibition of PI3K ameliorated expression of the osteogenic markers alkaline phosphatase, type I collagen, osteopontin, and BMP-2. Expression of dominant-negative PI3K and PTEN, an inhibitor of PI3K signaling, significantly attenuated lovastatin-induced transcription of BMP-2. Akt kinase was also activated in a PI3K-dependent manner. However, our data suggest involvement of an additional signaling pathway. Lovastatin-induced Erk1/2 activity contributed to BMP-2 transcription. Inhibition of PI3K abrogated Erk1/2 activity in response to lovastatin, indicating the presence of a signal relay between them. We provide, as a mechanism of this cross-talk, the first evidence that lovastatin stimulates rapid activation of Ras, which associates with and activates PI3K in the plasma membrane, which in turn regulates Akt and Erk1/2 to induce BMP-2 expression for osteoblast differentiation.


Author(s):  
Min Yang ◽  
Shi-Hua Jia ◽  
Hui-Ling Tao ◽  
Chen Zhu ◽  
Wan-Zhong Jia ◽  
...  

Abstract It is urgent to understand the regulatory mechanism of drug resistance in widespread bacterial pathogens. In Mycobacterium tuberculosis, several transcriptional regulators have been found to play essential roles in regulating its drug resistance. In this study, we found that an ArsR family transcription regulator encoded by Rv2642 (CdiR) responds to isoniazid (INH), a widely used anti-tuberculosis (TB) drug. CdiR negatively regulates self and adjacent genes, including arsC (arsenic-transport integral membrane protein ArsC). CdiR directly interacts with INH and Cd(II). The binding of INH and Cd(II) both reduce its DNA-binding activity. Disrupting cdiR increased the drug susceptibility to INH, whereas overexpressing cdiR decreased the susceptibility. Strikingly, overexpressing arsC increased the drug susceptibility as well as cdiR. Additionally, both changes in cdiR and arsC expression caused sensitivity to other drugs such as rifamycin and ethambutol, where the minimal inhibitory concentrations in the cdiR deletion strain were equal to those of the arsC-overexpressing strain, suggesting that the function of CdiR in regulating drug resistance primarily depends on arsC. Furthermore, we found that Cd(II) enhances bacterial resistance to INH in a CdiR-dependent manner. As a conclusion, CdiR has a critical role in directing the interplay between Cd(II) metal ions and drug susceptibility in mycobacteria.


2020 ◽  
Vol 21 (3) ◽  
pp. 824 ◽  
Author(s):  
Yinghua Jiang ◽  
Li Lin ◽  
Ning Liu ◽  
Qingzhi Wang ◽  
Jing Yuan ◽  
...  

Recombinant fibroblast growth factor 21 (rFGF21) has been shown to be potently beneficial for improving long-term neurological outcomes in type 2 diabetes mellitus (T2DM) stroke mice. Here, we tested the hypothesis that rFGF21 protects against poststroke blood–brain barrier (BBB) damage in T2DM mice via peroxisome proliferator-activated receptor gamma (PPARγ) activation in cerebral microvascular endothelium. We used the distal middle cerebral occlusion (dMCAO) model in T2DM mice as well as cultured human brain microvascular endothelial cells (HBMECs) subjected to hyperglycemic and inflammatory injury in the current study. We detected a significant reduction in PPARγ DNA-binding activity in the brain tissue and mRNA levels of BBB junctional proteins and PPARγ-targeting gene CD36 and FABP4 in cerebral microvasculature at 24 h after stroke. Ischemic stroke induced a massive BBB leakage two days after stroke in T2DM mice compared to in their lean controls. Importantly, all abnormal changes were significantly prevented by rFGF21 administration initiated at 6 h after stroke. Our in vitro experimental results also demonstrated that rFGF21 protects against hyperglycemia plus interleukin (IL)-1β-induced transendothelial permeability through upregulation of junction protein expression in an FGFR1 activation and PPARγ activity elevation-dependent manner. Our data suggested that rFGF21 has strong protective effects on acute BBB leakage after diabetic stroke, which is partially mediated by increasing PPARγ DNA-binding activity and mRNA expression of BBB junctional complex proteins. Together with our previous investigations, rFGF21 might be a promising candidate for treating diabetic stroke.


2004 ◽  
Vol 279 (44) ◽  
pp. 45887-45896 ◽  
Author(s):  
Mark J. Demma ◽  
Serena Wong ◽  
Eugene Maxwell ◽  
Bimalendu Dasmahapatra

The p53 protein plays a major role in the maintenance of genome stability in mammalian cells. Mutations of p53 occur in over 50% of all cancers and are indicative of highly aggressive cancers that are hard to treat. Recently, there has been a high degree of interest in therapeutic approaches to restore growth suppression functions to mutant p53. Several compounds have been reported to restore wild type function to mutant p53. One such compound, CP-31398, has been shown effectivein vivo, but questions have arisen to whether it actually affects p53. Here we show that mutant p53, isolated from cells treated with CP-31398, is capable of binding to p53 response elementsin vitro. We also show the compound restores DNA-binding activity to mutant p53 in cells as determined by a chromatin immunoprecipitation assay. In addition, using purified p53 core domain from two different hotspot mutants (R273H and R249S), we show that CP-31398 can restore DNA-binding activity in a dose-dependent manner. Using a quantitative DNA binding assay, we also show that CP-31398 increases significantly the amount of mutant p53 that binds to cognate DNA (Bmax) and its affinity (Kd) for DNA. The compound, however, does not affect the affinity (Kdvalue) of wild type p53 for DNA and only increasesBmaxslightly. In a similar assay PRIMA1 does not have any effect on p53 core DNA-binding activity. We also show that CP-31398 had no effect on the DNA-binding activity of p53 homologs p63 and p73.


1994 ◽  
Vol 14 (7) ◽  
pp. 4380-4389 ◽  
Author(s):  
L I Chen ◽  
T Nishinaka ◽  
K Kwan ◽  
I Kitabayashi ◽  
K Yokoyama ◽  
...  

Studies have demonstrated that the retinoblastoma susceptibility gene product, RB, can either positively or negatively regulate expression of several genes through cis-acting elements in a cell-type-dependent manner. The nucleotide sequence of the retinoblastoma control element (RCE) motif, GCCACC or CCACCC, and the Sp1 consensus binding sequence, CCGCCC, can confer equal responsiveness to RB. Here, we report that RB activates transcription of the c-jun gene through the Sp1-binding site within the c-jun promoter. Preincubation of crude nuclear extracts with monoclonal antibodies to RB results in reduction of Sp1 complexes in a mobility shift assay, while addition of recombinant RB in mobility shift assay mixtures with CCL64 cell extracts leads to an enhancement of DNA-binding activity of SP1. These results suggest that RB is directly or indirectly involved in Sp1-DNA binding activity. A mechanism by which RB regulates transactivation is indicated by our detection of a heat-labile and protease-sensitive Sp1 negative regulator(s) (Sp1-I) that specifically inhibits Sp1 binding to a c-jun Sp1 site. This inhibition is reversed by addition of recombinant RB proteins, suggesting that RB stimulates Sp1-mediated transactivation by liberating Sp1 from Sp1-I. Additional evidence for Sp1-I involvement in Sp1-mediated transactivation was demonstrated by cotransfection of RB, GAL4-Sp1, and a GAL4-responsive template into CV-1 cells. Finally, we have identified Sp1-I, a approximately 20-kDa protein(s) that inhibits the Sp1 complexes from binding to DNA and that is also an RB-associated protein. These findings provide evidence for a functional link between two distinct classes of oncoproteins, RB and c-Jun, that are involved in the control of cell growth, and also define a novel mechanism for the regulation of c-jun expression.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3384-3384
Author(s):  
Chirag Acharya ◽  
Gang An ◽  
Mike Y Zhong ◽  
Michele Cea ◽  
Antonia Cagnetta ◽  
...  

Abstract B cell maturation antigen (BCMA), selectively elevated in malignant plasma cells, is an ideal target antigen for immunotherapies for multiple myeloma (MM). Most recently, we reported novel antagonistic anti-BCMA antibody drug conjugates (ADCs) showing potent and specific anti-MM activities via effector cell-dependent and -independent mechanisms in vitro and in vivo (Blood 2014; 123:3128) We here further characterize molecular mechanisms of BCMA activation in MM cells in the bone marrow microenvironment by directly manipulating BCMA receptor levels in MM cells and ligation of a proliferation-inducing ligand (APRIL) to MM cells. Three MM cell lines H929, MM1S, and RPMI8226 with highest, medium, and low BCMA, respectively, were either transfected with lentiviruses of BCMA shRNA or cDNA. First, downregulation of BCMA significantly blocked viability of all 3 MM cells and induced caspase3/7 activities, which led to potent reduction of colony formation in a 3-week methylcellulose culture. Next, MM1R and H929 transfectants with the Doxycyclin (dox)-inducible lentiviral expression vector pTRIPZ shBCMA were generated. Time-dependent BCMA reduction only occurred in dox (1 ug/ml)-containing media. Dox-dependent BCMA inhibition was followed by decreased anti-apoptotic genes (Mcl1, Bcl-2, XIAP, NAIP, NFκB1, NFκB2) and proliferative genes (CCND2, CDK4/6, c-MYC). Conversely, overexpression of BCMA in RPMI8226 by either pCMV6/BCMA vector or pLocBCMA lentiviruses significantly increased NFκB (p65, p50, p52) DNA binding activity. Anti-apoptotic gene and cell proliferation genes were also up-regulated in BCMA-overexpressing MM cells. In addition, osteoclast activation factors MIP-1α/β, SDF-1, angiogenesis factors (VEGF, PECAM-1), adhesion proteins (CD44, ICAM1), as well as immunosuppressive factor TGFβ were augmented in BCMA-overexpressing MM cells. Importantly, opposite effects on these downstream genes were seen in BCMA-knockdown MM cells. Moreover, stimulation of 3 MM cells by APRIL robustly induces NFκB DNA binding activity (p65, p50, and p52, to a lesser extend) and activates PI3K/AKT and ERK1/2 signaling. APRIL also induces pro-survival/anti-apoptotic targets (BCL2A1, NFκB1, NFκB2) and chemotactic/osteoclast activating factors (MIP1α and MIP1β) in a dose-dependent manner. Angiogenesis and adhesion/chemoattractant factors (VEGF, IL-8, CXCL10, and RANTES) were also significantly induced upon APRIL stimulation. In contrast, BCMA-Fc protein that blocks APRIL binding to BCMA, inhibits secretion of these cytokines/chemokines, indicating specific response of engagement of BCMA by APRIL in BCMA-expressing MM cells. APRIL induced adhesion and migration of MM cells whereas BCMA-Fc blocked APRIL-induced responses. Finally, RPMI8226/pLocBCMA cells induce earlier tumor onset and more tumor growth in mouse xenograft model when compared with control RPMI8226 cells. In contrast, pTRIPZ shBCMA H929 cells induce significantly less tumor formation and further prolong survival of mice fed with dox(2 ug/ml)-containing water than those without dox. Together, these results define molecular regulators of active APRIL/BCMA signaling cascade in the MM BM milieu, further supporting targeting APRIL/BCMA in MM. Disclosures Anderson: Celgene: Consultancy; Sanofi-Aventis: Consultancy; Onyx: Consultancy; Acetylon: Scientific Founder, Scientific Founder Other; Oncoprep: Scientific Founder Other; Gilead Sciences: Consultancy.


Sign in / Sign up

Export Citation Format

Share Document