The Neurospora crassa cyt-20 gene encodes cytosolic and mitochondrial valyl-tRNA synthetases and may have a second function in addition to protein synthesis

1991 ◽  
Vol 11 (8) ◽  
pp. 4022-4035
Author(s):  
A R Kubelik ◽  
B Turcq ◽  
A M Lambowitz

The cyt-20-1 mutant of Neurospora crassa is a temperature-sensitive, cytochrome b- and aa3-deficient strain that is severely deficient in both mitochondrial and cytosolic protein synthesis (R.A. Collins, H. Bertrand, R.J. LaPolla, and A.M. Lambowitz, Mol. Gen. Genet. 177:73-84, 1979). We cloned the cyt-20+ gene by complementation of the cyt-20-1 mutation and found that it contains a 1,093-amino-acid open reading frame (ORF) that encodes both the cytosolic and mitochondrial valyl-tRNA synthetases (vaIRSs). A second mutation, un-3, which is allelic with cyt-20-1, also results in temperature-sensitive growth, but not in gross deficiencies in cytochromes b and aa3 or protein synthesis. The un-3 mutant had also been reported to have pleiotropic defects in cellular transport process, resulting in resistance to amino acid analogs (M.S. Kappy and R.L. Metzenberg, J. Bacteriol. 94:1629-1637, 1967), but this resistance phenotype is separable from the temperature sensitivity in crosses and may result from a mutation in a different gene. The 1,093-amino-acid ORF encoding vaIRSs is the site of missense mutations resulting in temperature sensitivity in both cyt-20-1 and un-3 and is required for the transformation of both mutants. The opposite strand of the cyt-20 gene encodes an overlapping ORF of 532 amino acids, which may also be functional but is not required for transformation of either mutant. The cyt-20-1 mutation in the vaIRS ORF results in severe deficiencies of both mitochondrial and cytosolic vaIRS activities, whereas the un-3 mutation does not appear to result in a deficiency of these activities or of mitochondrial or cytosolic protein synthesis sufficient to account for its temperature-sensitive growth. The phenotype of the un-3 mutant raises the possibility that the vaIRS ORF has a second function in addition to protein synthesis.

1991 ◽  
Vol 11 (8) ◽  
pp. 4022-4035 ◽  
Author(s):  
A R Kubelik ◽  
B Turcq ◽  
A M Lambowitz

The cyt-20-1 mutant of Neurospora crassa is a temperature-sensitive, cytochrome b- and aa3-deficient strain that is severely deficient in both mitochondrial and cytosolic protein synthesis (R.A. Collins, H. Bertrand, R.J. LaPolla, and A.M. Lambowitz, Mol. Gen. Genet. 177:73-84, 1979). We cloned the cyt-20+ gene by complementation of the cyt-20-1 mutation and found that it contains a 1,093-amino-acid open reading frame (ORF) that encodes both the cytosolic and mitochondrial valyl-tRNA synthetases (vaIRSs). A second mutation, un-3, which is allelic with cyt-20-1, also results in temperature-sensitive growth, but not in gross deficiencies in cytochromes b and aa3 or protein synthesis. The un-3 mutant had also been reported to have pleiotropic defects in cellular transport process, resulting in resistance to amino acid analogs (M.S. Kappy and R.L. Metzenberg, J. Bacteriol. 94:1629-1637, 1967), but this resistance phenotype is separable from the temperature sensitivity in crosses and may result from a mutation in a different gene. The 1,093-amino-acid ORF encoding vaIRSs is the site of missense mutations resulting in temperature sensitivity in both cyt-20-1 and un-3 and is required for the transformation of both mutants. The opposite strand of the cyt-20 gene encodes an overlapping ORF of 532 amino acids, which may also be functional but is not required for transformation of either mutant. The cyt-20-1 mutation in the vaIRS ORF results in severe deficiencies of both mitochondrial and cytosolic vaIRS activities, whereas the un-3 mutation does not appear to result in a deficiency of these activities or of mitochondrial or cytosolic protein synthesis sufficient to account for its temperature-sensitive growth. The phenotype of the un-3 mutant raises the possibility that the vaIRS ORF has a second function in addition to protein synthesis.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 289
Author(s):  
Kathleen K. M. Glover ◽  
Danica M. Sutherland ◽  
Terence S. Dermody ◽  
Kevin M. Coombs

Studies of conditionally lethal mutants can help delineate the structure-function relationships of biomolecules. Temperature-sensitive (ts) mammalian reovirus (MRV) mutants were isolated and characterized many years ago. Two of the most well-defined MRV ts mutants are tsC447, which contains mutations in the S2 gene encoding viral core protein σ2, and tsG453, which contains mutations in the S4 gene encoding major outer-capsid protein σ3. Because many MRV ts mutants, including both tsC447 and tsG453, encode multiple amino acid substitutions, the specific amino acid substitutions responsible for the ts phenotype are unknown. We used reverse genetics to recover recombinant reoviruses containing the single amino acid polymorphisms present in ts mutants tsC447 and tsG453 and assessed the recombinant viruses for temperature-sensitivity by efficiency-of-plating assays. Of the three amino acid substitutions in the tsG453 S4 gene, Asn16-Lys was solely responsible for the tsG453ts phenotype. Additionally, the mutant tsC447 Ala188-Val mutation did not induce a temperature-sensitive phenotype. This study is the first to employ reverse genetics to identify the dominant amino acid substitutions responsible for the tsC447 and tsG453 mutations and relate these substitutions to respective phenotypes. Further studies of other MRV ts mutants are warranted to define the sequence polymorphisms responsible for temperature sensitivity.


Genome ◽  
1991 ◽  
Vol 34 (4) ◽  
pp. 644-651 ◽  
Author(s):  
Kenneth Koo ◽  
W. Dorsey Stuart

The gene product of the mtr locus of Neurospora crassa is required for the transport of neutral aliphatic and aromatic amino acids via the N system. We have previously cloned three cosmids containing Neurospora DNA that complement the mtr-6(r) mutant allele. The cloned DNAs were tightly linked to restriction fragment length polymorphisms that flank the mtr locus. A 2.9-kbp fragment from one cosmid was subcloned and found to complement the mtr-6(r) allele. Here we report the sequence of the fragment that hybridized to a poly(A)+ mRNA transcript of about 2300 nucleotides. We have identified an 845-bp open reading frame (ORF) having a 59-bp intron as the potential mtr ORF. S1 nuclease analysis of the transcript confirmed the transcript size and the presence of the intron. A second open reading frame was found upstream in the same reading frame as the mtr ORF and appears to be present in the mRNA transcript. The mtr ORF is predicted to encode a 261 amino acid polypeptide with a molecular mass of 28 613 Da. The proposed polypeptide exhibits six potential α-helical transmembrane domains with an average length of 23 amino acids, does not have a signal sequence, and contains amino acid sequence homologous to an RNA binding motif.Key words: sequence, membranes, ribonucleoprotein.


1991 ◽  
Vol 99 (4) ◽  
pp. 711-719
Author(s):  
K.L. O'Donnell ◽  
A.H. Osmani ◽  
S.A. Osmani ◽  
N.R. Morris

The recessive, temperature-sensitive bimA1 mutation of Aspergillus nidulans blocks nuclei in metaphase at restrictive temperature. To determine whether the bimA product is essential, integrative transformation was used to create a mutation in the bimA gene. The mutation was maintained in a heterokaryon and the phenotype of spores produced by the heterokaryon was analyzed. Molecular disruption of the wild-type bimA gene is recessive in the heterokaryon and causes a metaphase block, demonstrating that bimA is an essential gene for mitosis. bimA was cloned by DNA-mediated complementation of its mutant phenotype at restrictive temperature, and the nucleotide sequence of a full-length cDNA was determined. A single large open reading frame was identified in the cDNA sequence, which predicts a protein containing 806 amino acid residues that is related (30.4% identity) to the Schizosaccharomyces pombe nuc2+ gene product, which also is required for completion of mitosis. The sequence of the bimA gene indicates that it is a member of a family of mostly nuclear proteins that contain a degenerate 34 amino acid repeat, the TPR (tetratricopeptide repeat) gene family.


1998 ◽  
Vol 42 (11) ◽  
pp. 2906-2913 ◽  
Author(s):  
James M. Battisti ◽  
Laura S. Smitherman ◽  
D. Scott Samuels ◽  
Michael F. Minnick

ABSTRACT This study describes the first isolation and characterization of spontaneous mutants conferring natural resistance to an antibiotic for any Bartonella species. The Bartonella bacilliformis gyrB gene, which encodes the B subunit of DNA gyrase, was cloned and sequenced. The gyrB open reading frame (ORF) is 2,079 bp and encodes a deduced amino acid sequence of 692 residues, corresponding to a predicted protein of ∼77.5 kDa. Sequence alignment indicates that B. bacilliformis GyrB is most similar to the GyrB protein from Bacillus subtilis (40.1% amino acid sequence identity) and that it contains the longest N-terminal tail (52 residues) of any GyrB characterized to date. The cloned B. bacilliformis gyrB was expressed in an Escherichia coli S30 cell extract and was able to functionally complement a temperature-sensitive E. coli Cour gyrB mutant (strain N4177). We isolated and characterized spontaneous mutants of B. bacilliformis resistant to coumermycin A1, an antibiotic that targets GyrB. Sequence analysis of gyrB from 12 Cour mutants ofB. bacilliformis identified single nucleotide transitions at three separate loci in the ORF. The predicted amino acid substitutions resulting from these transitions are Gly to Ser at position 124 (Gly124→Ser), Arg184→Gln, and Thr214→Ala or Thr214→Ile, which are analogous to mutated residues found in previously characterized resistant gyrB genes fromBorrelia burgdorferi, E. coli,Staphylococcus aureus, and Haloferax sp. The Cour mutants are three to five times more resistant to coumermycin A1 than the wild-type parental strain.


2003 ◽  
Vol 23 (20) ◽  
pp. 7403-7414 ◽  
Author(s):  
Matthias Gautschi ◽  
Sören Just ◽  
Andrej Mun ◽  
Suzanne Ross ◽  
Peter Rücknagel ◽  
...  

ABSTRACT The majority of cytosolic proteins in eukaryotes contain a covalently linked acetyl moiety at their very N terminus. The mechanism by which the acetyl moiety is efficiently transferred to a large variety of nascent polypeptides is currently only poorly understood. Yeast Nα -acetyltransferase NatA, consisting of the known subunits Nat1p and the catalytically active Ard1p, recognizes a wide range of sequences and is thought to act cotranslationally. We found that NatA was quantitatively bound to ribosomes via Nat1p and contained a previously unrecognized third subunit, the Nα -acetyltransferase homologue Nat5p. Nat1p not only anchored Ard1p and Nat5p to the ribosome but also was in close proximity to nascent polypeptides, independent of whether they were substrates for Nα -acetylation or not. Besides Nat1p, NAC (nascent polypeptide-associated complex) and the Hsp70 homologue Ssb1/2p interact with a variety of nascent polypeptides on the yeast ribosome. A direct comparison revealed that Nat1p required longer nascent polypeptides for interaction than NAC and Ssb1/2p. Δnat1 or Δard1 deletion strains were temperature sensitive and showed derepression of silent mating type loci while Δnat5 did not display any obvious phenotype. Temperature sensitivity and derepression of silent mating type loci caused by Δnat1 or Δard1 were partially suppressed by overexpression of SSB1. The combination of data suggests that Nat1p presents the N termini of nascent polypeptides for acetylation and might serve additional roles during protein synthesis.


1996 ◽  
Vol 16 (2) ◽  
pp. 677-684 ◽  
Author(s):  
J A Prendergast ◽  
C Ptak ◽  
D Kornitzer ◽  
C N Steussy ◽  
R Hodgins ◽  
...  

The Cdc34 (Ubc3) ubiquitin-conjugating enzyme from Saccharomyces cerevisiae plays an essential role in the progression of cells from the G1 to S phase of the cell division cycle. Using a high-copy suppression strategy, we have identified a yeast gene (UBS1) whose elevated expression suppresses the conditional cell cycle defects associated with cdc34 mutations. The UBS1 gene encodes a 32.2-kDa protein of previously unknown function and is identical in sequence to a genomic open reading frame on chromosome II (GenBank accession number Z36034). Several lines of evidence described here indicate that Ubs1 functions as a general positive regulator of Cdc34 activity. First, overexpression of UBS1 suppresses not only the cell proliferation and morphological defects associated with cdc34 mutants but also the inability of cdc34 mutant cells to degrade the general amino acid biosynthesis transcriptional regulator, Gcn4. Second, deletion of the UBS1 gene profoundly accentuates the cell cycle defect when placed in combination with a cdc34 temperature-sensitive allele. Finally, a comparison of the Ubs1 and Cdc34 polypeptide sequences reveals two noncontiguous regions of similarity, which, when projected onto the three-dimensional structure of a ubiquitin-conjugating enzyme, define a single region situated on its surface. While cdc34 mutations corresponding to substitutions outside this region are suppressed by UBS1 overexpression, Ubs1 fails to suppress amino acid substitutions made within this region. Taken together with other findings, the allele specificity exhibited by UBS1 expression suggests that Ubs1 regulates Cdc34 by interaction or modification.


2020 ◽  
Author(s):  
Thareendra De Zoysa ◽  
Eric M. Phizicky

AbstractAll tRNAs are extensively modified, and modification deficiency often results in growth defects in the budding yeast Saccharomyces cerevisiae and neurological or other disorders in humans. In S. cerevisiae, lack of any of several tRNA body modifications results in rapid tRNA decay (RTD) of certain mature tRNAs by the 5’-3’ exonucleases Rat1 and Xrn1. As tRNA quality control decay mechanisms are not extensively studied in other eukaryotes, we studied trm8Δ mutants in the evolutionarily distant fission yeast Schizosaccharomyces pombe, which lack 7-methylguanosine at G46 of tRNAs. We report here that S. pombe trm8Δ mutants are temperature sensitive primarily due to decay of tRNATyr(GUA) and that spontaneous mutations in the RAT1 ortholog dhp1+ restored temperature resistance and prevented tRNA decay, demonstrating conservation of the RTD pathway. We also report for the first time evidence linking the RTD and the general amino acid control (GAAC) pathways, which we show in both S. pombe and S. cerevisiae. In S. pombe trm8Δ mutants, spontaneous GAAC mutations restored temperature resistance and tRNA levels, and the temperature sensitivity of trm8Δ mutants was precisely linked to GAAC activation due to tRNATyr(GUA) decay. Similarly, in the well-studied S. cerevisiae trm8Δ trm4Δ RTD mutant, temperature sensitivity was closely linked to GAAC activation due to tRNAVal(AAC) decay; however, in S. cerevisiae, GAAC mutations increased tRNA decay and enhanced temperature sensitivity. Thus, these results demonstrate a conserved GAAC activation coincident with RTD in S. pombe and S. cerevisiae, but an opposite impact of the GAAC response in the two organisms. We speculate that the RTD pathway and its regulation of the GAAC pathway is widely conserved in eukaryotes, extending to other mutants affecting tRNA body modifications.Author SummarytRNA modifications are highly conserved and their lack frequently results in growth defects in the yeast Saccharomyces cerevisiae and neuorological disorders in humans. S. cerevsiaie has two tRNA quality control decay pathways that sense tRNAs lacking modifications in the main tRNA body. One of these, the rapid tRNA decay (RTD) pathway, targets mature tRNAs for 5’-3’ exonucleolytic decay by Rat1 and Xrn1. It is unknown if RTD is conserved in eukaryotes, and if it might explain phenotypes associated with body modification defects. Here we focus on trm8Δ mutants, lacking m7G46, in the evolutionarily distant yeast Schizosaccharomyces pombe. Loss of m7G causes temperature sensitivity and RTD in S. cerevisiae, microcephalic primordial dwarfism in humans, and defective stem cell renewal in mice. We show that S. pombe trm8Δ mutants are temperature sensitive due to tY(GUA) decay by Rat1, implying conservation of RTD among divergent eukaryotes. We also show that the onset of RTD triggers activation of the general amino acid control (GAAC) pathway in both S. pombe and S. cerevisiae, resulting in exacerbated decay in S. pombe and reduced decay in S. cerevisiae. We speculate that RTD and its regulation of the GAAC pathway will be widely conserved in eukaryotes including humans.


Sign in / Sign up

Export Citation Format

Share Document