scholarly journals Retinoid-induced apoptosis and Sp1 cleavage occur independently of transcription and require caspase activation.

1997 ◽  
Vol 17 (11) ◽  
pp. 6348-6358 ◽  
Author(s):  
F J Piedrafita ◽  
M Pfahl

Vitamin A and its derivatives, the retinoids, are essential regulators of many important biological functions, including cell growth and differentiation, development, homeostasis, and carcinogenesis. Natural retinoids such as all-trans retinoic acid can induce cell differentiation and inhibit growth of certain cancer cells. We recently identified a novel class of synthetic retinoids with strong anti-cancer cell activities in vitro and in vivo which can induce apoptosis in several cancer cell lines. Using an electrophoretic mobility shift assay, we analyzed the DNA binding activity of several transcription factors in T cells treated with apoptotic retinoids. We found that the DNA binding activity of the general transcription factor Sp1 is lost in retinoid-treated T cells undergoing apoptosis. A truncated Sp1 protein is detected by immunoblot analysis, and cytosolic protein extracts prepared from apoptotic cells contain a protease activity which specifically cleaves purified Sp1 in vitro. This proteolysis of Sp1 can be inhibited by N-ethylmaleimide and iodoacetamide, indicating that a cysteine protease mediates cleavage of Sp1. Furthermore, inhibition of Sp1 cleavage by ZVAD-fmk and ZDEVD-fmk suggests that caspases are directly involved in this event. In fact, caspases 2 and 3 are activated in T cells after treatment with apoptotic retinoids. The peptide inhibitors also blocked retinoid-induced apoptosis, as well as processing of caspases and proteolysis of Sp1 and poly(ADP-ribose) polymerase in intact cells. Degradation of Sp1 occurs early during apoptosis and is therefore likely to have profound effects on the basal transcription status of the cell. Interestingly, retinoid-induced apoptosis does not require de novo mRNA and protein synthesis, suggesting that a novel mechanism of retinoid signaling is involved, triggering cell death in a transcriptional activation-independent, caspase-dependent manner.

2004 ◽  
Vol 279 (44) ◽  
pp. 45887-45896 ◽  
Author(s):  
Mark J. Demma ◽  
Serena Wong ◽  
Eugene Maxwell ◽  
Bimalendu Dasmahapatra

The p53 protein plays a major role in the maintenance of genome stability in mammalian cells. Mutations of p53 occur in over 50% of all cancers and are indicative of highly aggressive cancers that are hard to treat. Recently, there has been a high degree of interest in therapeutic approaches to restore growth suppression functions to mutant p53. Several compounds have been reported to restore wild type function to mutant p53. One such compound, CP-31398, has been shown effectivein vivo, but questions have arisen to whether it actually affects p53. Here we show that mutant p53, isolated from cells treated with CP-31398, is capable of binding to p53 response elementsin vitro. We also show the compound restores DNA-binding activity to mutant p53 in cells as determined by a chromatin immunoprecipitation assay. In addition, using purified p53 core domain from two different hotspot mutants (R273H and R249S), we show that CP-31398 can restore DNA-binding activity in a dose-dependent manner. Using a quantitative DNA binding assay, we also show that CP-31398 increases significantly the amount of mutant p53 that binds to cognate DNA (Bmax) and its affinity (Kd) for DNA. The compound, however, does not affect the affinity (Kdvalue) of wild type p53 for DNA and only increasesBmaxslightly. In a similar assay PRIMA1 does not have any effect on p53 core DNA-binding activity. We also show that CP-31398 had no effect on the DNA-binding activity of p53 homologs p63 and p73.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3208-3208
Author(s):  
Katharina Foerster ◽  
Carl Philipp Simon-Gabriel ◽  
Dorothee Bleckmann ◽  
Marco Benkisser-Petersen ◽  
Nicolas Thornton ◽  
...  

Abstract Introduction: In recent years, the emergence of kinase inhibitors has drastically altered treatment strategies and improved outcomes in CLL patients, but lack of cure and resistance to therapy still remain serious issues. The transcription factor NF-κB influences several cellular functions such as proliferation, apoptosis and inflammation and is known as a key factor contributing to CLL development and progression. NF-κB is constitutively active in CLL and the NF-κB subunit RELA has been proposed as a prognostic marker in CLL with high RELA DNA-binding activity being predictive of short time to first treatment and overall survival. Therefore, NF-κB has gained attention as a promising therapeutic target. NF-kB inhibition induces apoptosis in CLL cells in vitro. However, whether this effect pertains in vivoremains unclear. Since the microenvironment is crucial for CLL cell viability circumventing apoptosis, we tested whether NF-κB inhibition modulates CLL viability in the presence of the microenvironment. Methods: The specific NF-κB inhibitor Dehydroxymethylepoxyquinomicin (DHMEQ) was used alone (2-5 µg/ml) or combined with fludarabine (10 µM), rhBAFF (50 ng/ml), rhAPRIL (500 ng/ml), rhSDF-1a (100 ng/ml) or CD40 ligand (1 µg/ml) on primary CLL cells cultured alone (monoculture) or on bone marrow stromal cells (BMSC) (co-culture with a ratio of 20 CLL cells per stromal cell) for 48-144 h. Viability and apoptosis were measured by flow cytometry using AnnexinV/PI stainings. Protein expression was analyzed by western blot using standard protocols. NF-κB DNA-binding activity after DHMEQ treatment (5 µg/ml) for 6 h was measured by ELISA for all subunits using 1 µg of protein lysate for the NF-κB1 subunit and 10 µg protein lysate for the subunits RELA, NF-κB2, RELB and c-REL. RELA gene knockdown was performed by siRNA transfection (2 µM targeting and non-targeting siRNA). Results: NF-κB inhibition using DHMEQ led to apoptosis in monocultured CLL cells (viability 74% vs. 24%, n=17, p<0.0001) but surprisingly had no effect on cell viability of cells co-cultured with BMSC (viability 96% vs. 95%, p=0.9995). In monoculture, apoptosis induction was accompanied by downregulation of the NF-κB target protein TRAF1 (untreated vs. treated: expression reduced by 34 %, p=0,0044), upregulation of the proapoptotic protein BAX (expression increased by 3175 %, p=0,0268), and increased PARP cleavage (100% vs. 8393% expression, p=0,0078). Conversely, in co-culture, downregulation of TRAF1 by 52 % (p=0,0054) was observed without concomitant BAX upregulation or PARP cleavage matching the non-appearance of apoptosis induction in those cells. While co-culturing untreated CLL cells on BMSC led to tendentially increased expression levels of the non-canonical NF-κB subunits NF-κB2 (untreated monocultured cells vs. untreated co-cultured cells: 100% vs. 142%, p=0,8438) and RELB (100% vs. 128%, p=0,7422), NF-κB DNA-binding activities of all NF-κB subunits were equally suppressed by DHMEQ treatment in mono- and co-cultured cells (e.g. treated monocultured vs. treated co-cultured cells: 1,6% vs. 4,9%, p<0,9999 for NF-κB1). Gene knockdown of the NF-κB subunit RELA by siRNA transfection solely induced apoptosis in monocultured CLL cells as well. Adding soluble BAFF to monocultured treated CLL cells attenuated DHMEQ efficiency (viability 1,3% vs. 16%, p=0,0258, n=9), while adding APRIL, CD40 ligand and SDF-1a had little influence on the response to treatment. Finally, the combined use of DHMEQ with fludarabine in co-cultured CLL cells led to a higher rate of apoptosis than DHMEQ (viability 57% vs. 37%, p=0.0202) or fludarabine alone (viability 50% vs. 37%, p=0.1828). Conclusion: NF-κB inhibition in primary CLL cells shows great discrepancy between in vitro and in vivo scenarios. While DHMEQ treatment leads to apoptosis in mono-cultured cells by BAX upregulation and increased PARP cleavage, CLL cell viability is not affected in the presence of microenvironment, suggesting that the NF-κB pathway can be bypassed in vivo. Soluble ligands, especially BAFF, appear to be involved in mediating this protective effect. However, the combination of NF-κB inhibition with standard chemotherapy might represent a promising approach and warrants further clinical assessment. Disclosures No relevant conflicts of interest to declare.


2001 ◽  
Vol 353 (3) ◽  
pp. 591-601 ◽  
Author(s):  
Olivier LAROCHELLE ◽  
Gale STEWART ◽  
Pierre MOFFATT ◽  
Véronique TREMBLAY ◽  
Carl SÉGUIN

Metal activation of metallothionein gene transcription depends mainly on the presence of regulatory DNA sequences termed metal-regulatory elements (MREs) and involves MRE-binding transcription factor-1 (MTF-1) interacting with the MREs in a Zn2+-dependent manner. We previously identified and characterized a nuclear protein, termed metal element protein-1 (MEP-1), specifically binding with high affinity to MRE elements. The precise relationship between MTF-1 and MEP-1 was unclear, and to determine whether MEP-1 and MTF-1 were distinct protein species, we performed DNA binding analyses to characterize the binding properties of both proteins. Electrophoretic mobility-shift assays showed that MTF-1, produced in COS cells, produces a slower-migrating band compared with that obtained with purified MEP-1. Using an anti-MTF-1 antibody, we showed that both the MTF-1–MRE and the MEP-1–MRE complexes are supershifted by an anti-MTF-1 antibody, thus demonstrating that MEP-1 is antigenically related to MTF-1. RNase protection analyses carried out with RNA prepared from different tissues and cell lines failed to reveal the presence of MTF-1 splicing variants. This indicates that MEP-1 may be a proteolytic fragment of MTF-1. MTF-1 DNA-binding activity was rapidly activated in vivo by Zn2+ ions but not by Cd2+, UV irradiation or PMA, and occurred on ice as well as at 21°C. In control and Zn2+-treated cell extracts, DNA-binding activity was not enhanced in vitro following the addition of exogenous Zn2+ or a preincubation at 37°C. However, recombinant MTF-1 produced in vitro required Zn2+ activation for DNA binding. Interestingly, treatment of nuclear extracts with calf intestine phosphatase completely abrogated MTF-1 DNA-binding activity, thus suggesting that phosphorylation is involved in the regulation of MTF-1 activity.


2001 ◽  
Vol 183 (6) ◽  
pp. 2025-2031 ◽  
Author(s):  
Wises Namwat ◽  
Chang-Kwon Lee ◽  
Hiroshi Kinoshita ◽  
Yasuhiro Yamada ◽  
Takuya Nihira

ABSTRACT A gene designated varR (for virginiaeantibiotic resistance regulator) was identified in Streptomyces virginiae 89 bp downstream of a varS gene encoding a virginiamycin S (VS)-specific transporter. The deduced varRproduct showed high homology to repressors of the TetR family with a conserved helix-turn-helix DNA binding motif. Purified recombinant VarR protein was present as a dimer in vitro and showed clear DNA binding activity toward the varS promoter region. This binding was abolished by the presence of VS, suggesting that VarR regulates transcription of varS in a VS-dependent manner. Northern blot analysis revealed that varR was cotranscribed with upstream varS as a 2.4-kb transcript and that VS acted as an inducer of bicistronic transcription. Deletion analysis of thevarS promoter region clarified two adjacent VarR binding sites in the varS promoter.


2006 ◽  
Vol 26 (11) ◽  
pp. 4226-4239 ◽  
Author(s):  
Victoria H. Cowling ◽  
Sanjay Chandriani ◽  
Michael L. Whitfield ◽  
Michael D. Cole

ABSTRACT The myc family of oncogenes is well conserved throughout evolution. Here we present the characterization of a domain conserved in c-, N-, and L-Myc from fish to humans, N-Myc317-337, designated Myc box IV (MBIV). A deletion of this domain leads to a defect in Myc-induced apoptosis and in some transformation assays but not in cell proliferation. Unlike other Myc mutants, MycΔMBIV is not a simple loss-of-function mutant because it is hyperactive for G2 arrest in primary cells. Microarray analysis of genes regulated by N-MycΔMBIV reveals that it is weakened for transactivation and repression but not nearly as defective as N-MycΔMBII. Although the mutated region is not part of the previously defined DNA binding domain, we find that N-MycΔMBIV has a significantly lower affinity for DNA than the wild-type protein in vitro. Furthermore, chromatin immunoprecipitation shows reduced binding of N-MycΔMBIV to some target genes in vivo, which correlates with the defect in transactivation. Thus, this conserved domain has an unexpected role in Myc DNA binding activity. These data also provide a novel separation of Myc functions linked to the modulation of DNA binding activity.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A198-A198
Author(s):  
Tingting Zhong ◽  
Xinghua Pang ◽  
Zhaoliang Huang ◽  
Na Chen ◽  
Xiaoping Jin ◽  
...  

BackgroundTIGIT is an inhibitory receptor mainly expressed on natural killer (NK) cells, CD8+ T cells, CD4+ T cells and Treg cells. TIGIT competes with CD226 for binding with CD155. In cancers, CD155 has been reported to up-regulate on tumor cells, and TIGIT was found to increase on TILs.1 Activation of TIGIT/CD155 pathway would mediate immunosuppression in tumor; while blockade of TIGIT promotes anti-tumor immune response.MethodsAK126 and AK113 are two humanized anti-human TIGIT monoclonal antibodies developed by Akesobio. Binding activity of AK126 and AK113 to human TIGIT, and competitive binding activity with CD155 and CD112, were performed by using ELISA, Fortebio, and FACS assays. Cross-reactivity with cynomolgus monkey TIGIT and epitope binning were also tested by ELISA assay. In-vitro assay to investigate the activity to promote IL-2 secretion was performed in mixed-culture of Jurkat-TIGIT cells and THP-1 cells.ResultsAK126 and AK113 could specifically bind to human TIGIT with comparative affinity and effectively blocked the binding of human CD155 and CD112 to human TIGIT. X-ray crystal structure of TIGIT and PVR revealed the C’-C’’ loop and FG loop regions of TIGIT are the main PVR interaction regions.2 The only amino acid residue differences in these regions between human and monkey TIGIT are 70C and 73D. AK126 binds to both human and monkey TIGIT, AK113 binds only to monkey TIGIT. This suggests that these residues are required for AK113 binding to human TIGIT, but not required for AK126. Interestingly, results from cell-based assays indicated that AK126 and AK113 showed significantly different activity to induce IL-2 secretion in mixed-culture of Jurkat-TIGIT cells and THP-1 cells (figure 1A and B), in which AK126 had a comparable capacity of activity to 22G2, a leading TIGIT mAb developed by another company, to induce IL-2 secretion, while, AK113 showed a significantly higher capacity than 22G2 and AK126.Abstract 184 Figure 1Anti-TIGIT Antibodies Rescues IL-2 Production in Vitro T-Cell Activity Assay in a dose dependent manner. Jurkat-TIGIT cells (Jurkat cells engineered to over-express human TIGIT) were co-cultured with THP-1 cells, and stimulated with plate-bound anti-CD3 mAb in the presence of TIGIT ligand CD155 (A) or CD112 (B) with anti-TIGIT antibodies. After incubated for 48h at 37° C and 5.0% CO2, IL-2 levels were assessed in culture supernatants by ELISA. Data shown as mean with SEM for n = 2.ConclusionsWe discovered two distinct types of TIGIT antibodies with differences in both epitope binding and functional activity. The mechanism of action and clinical significance of these antibodies require further investigation.ReferencesSolomon BL, Garrido-Laguna I. TIGIT: a novel immunotherapy target moving from bench to bedside. Cancer Immunol Immunother 2018;67:1659–1667.Stengel KF, Harden-Bowles K, Yu X, et al. Structure of TIGIT immunoreceptor bound to poliovirus receptor reveals a cell-cell adhesion and signaling mechanism that requires cis-trans receptor clustering. Proc Natl Acad Sci USA 2012;109:5399–5404.


Blood ◽  
2008 ◽  
Vol 112 (4) ◽  
pp. 1056-1067 ◽  
Author(s):  
Mira T. Kassouf ◽  
Hedia Chagraoui ◽  
Paresh Vyas ◽  
Catherine Porcher

Abstract Dissecting the molecular mechanisms used by developmental regulators is essential to understand tissue specification/differentiation. SCL/TAL-1 is a basic helix-loop-helix transcription factor absolutely critical for hematopoietic stem/progenitor cell specification and lineage maturation. Using in vitro and forced expression experimental systems, we previously suggested that SCL might have DNA-binding–independent functions. Here, to assess the requirements for SCL DNA-binding activity in vivo, we examined hematopoietic development in mice carrying a germline DNA-binding mutation. Remarkably, in contrast to complete absence of hematopoiesis and early lethality in scl-null embryos, specification of hematopoietic cells occurred in homozygous mutant embryos, indicating that direct DNA binding is dispensable for this process. Lethality was forestalled to later in development, although some mice survived to adulthood. Anemia was documented throughout development and in adulthood. Cellular and molecular studies showed requirements for SCL direct DNA binding in red cell maturation and indicated that scl expression is positively autoregulated in terminally differentiating erythroid cells. Thus, different mechanisms of SCL's action predominate depending on the developmental/cellular context: indirect DNA binding activities and/or sequestration of other nuclear regulators are sufficient in specification processes, whereas direct DNA binding functions with transcriptional autoregulation are critically required in terminal maturation processes.


Blood ◽  
2002 ◽  
Vol 100 (12) ◽  
pp. 4129-4138 ◽  
Author(s):  
Bertrand Arnulf ◽  
Aude Villemain ◽  
Christophe Nicot ◽  
Elodie Mordelet ◽  
Pierre Charneau ◽  
...  

Human T-cell leukemia virus I is the etiologic agent of adult T-cell leukemia (ATL), an aggressive T-cell malignancy. The viral oncoprotein Tax, through the activation of nuclear factorκB (NF-κB), CCAAT-enhancer binding protein (CREB), and activated protein-1 (AP-1) pathways, is a transcriptional regulator of critical genes for T-cell homeostasis. In ATL cells, activated AP-1 complexes induce the production of transforming growth factor β1 (TGF-β1). TGF-β1 is an inhibitor of T-cell proliferation and cytotoxicity. Here we show that, in contrast to normal peripheral T cells, ATL cells are resistant to TGF-β1–induced growth inhibition. The retroviral transduction of the Tax protein in peripheral T cells resulted in the loss of TGF-β1 sensitivity. Transient transfection of Tax in HepG2 cells specifically inhibited Smad/TGF-β1 signaling in a dose-dependent manner. In the presence of Tax transfection, increasing amounts of Smad3 restored TGF-β1 signaling. Tax mutants unable to activate NF-κB or CREB pathways were also able to repress Smad3 transcriptional activity. Next we have demonstrated that Tax inhibits TGF-β1 signaling by reducing the Smad3 DNA binding activity. However, Tax did not decrease the expression and the nuclear translocation of Smad3 nor did it interact physically with Smad3. Rather, Tax induced c-Jun N-terminal kinase (JNK) activity and c-Jun phosphorylation, leading to the formation of Smad3/c-Jun complexes. Whereas c-Jun alone abrogates Smad3 DNA binding, cotransfection of Tax and of a dominant-negative form of JNK or a c-Jun antisense-restored Smad3 DNA binding activity and TGF-β1 responsiveness. In ATL and in normal T cells transduced by Tax, c-Jun was constitutively phosphorylated. Thus, we describe a new function of Tax, as a repressor of TGF-β1 signaling through JNK/c-Jun constitutive activation, which may play a critical role in ATL leukemogenesis.


1991 ◽  
Vol 11 (3) ◽  
pp. 1547-1552
Author(s):  
D Leshkowitz ◽  
M D Walker

Insulin-producing cells and fibroblasts were fused to produce hybrid lines. In hybrids derived from both hamster and rat insulinoma cells, no insulin mRNA could be detected in any of seven lines examined by Northern (RNA) analysis despite the presence in each line of the insulin genes of both parental cells. Hybrid cells were transfected with recombinant chloramphenicol acetyltransferase plasmids containing defined segments of the rat insulin I gene 5' flank. We observed no transcriptional activity of the intact insulin enhancer or of IEB2, a critical cis-acting element of the insulin enhancer. IEB2 has previously been shown to interact in vitro with IEF1, a DNA-binding activity observed selectively in insulin-producing cells. Hybrid cells showed no detectable IEF1 activity. Furthermore, the insulin enhancer was unable to reduce transcription directed by the Moloney sarcoma virus enhancer in a double-enhancer construct. Thus, extinction of insulin gene expression in the hybrids apparently does not operate through a direct action of repressors on the insulin enhancer; rather, extinction is accompanied by, and may be caused by, reduced DNA-binding activity of the putative transcriptional activator IEF1.


Sign in / Sign up

Export Citation Format

Share Document