scholarly journals Interaction of Mouse Polycomb-Group (Pc-G) Proteins Enx1 and Enx2 with Eed: Indication for Separate Pc-G Complexes

1998 ◽  
Vol 18 (6) ◽  
pp. 3572-3579 ◽  
Author(s):  
Maarten van Lohuizen ◽  
Marieke Tijms ◽  
Jan Willem Voncken ◽  
Armin Schumacher ◽  
Terry Magnuson ◽  
...  

ABSTRACT The Polycomb group (Pc-G) constitutes an important, functionally conserved group of proteins, required to stably maintain inactive homeobox genes repressed during development. Drosophila extra sex combs (esc) and its mammalian homolog embryonic ectoderm development (eed) are special Pc-G members, in that they are required early during development when Pc-G repression is initiated, a process that is still poorly understood. To get insight in the molecular function of Eed, we searched for Eed-interacting proteins, using the yeast two-hybrid method. Here we describe the specific in vivo binding of Eed to Enx1 and Enx2, two mammalian homologs of the essential DrosophilaPc-G gene Enhancer-of-zeste[E(z)]. No direct biochemical interactions were found between Eed/Enx and a previously characterized mouse Pc-G protein complex, containing several mouse Pc-G proteins includingmouse polyhomeotic (Mph1). This suggests that different Pc-G complexes with distinct functions may exist. However, partial colocalization of Enx1 and Mph1 to subnuclear domains may point to more transient interactions between these complexes, in support of a bridging role for Enx1.

1996 ◽  
Vol 16 (6) ◽  
pp. 3066-3073 ◽  
Author(s):  
O Hobert ◽  
B Jallal ◽  
A Ullrich

The proto-oncogene product Vav plays a critical role in hematopoietic signal transduction. By using the yeast two-hybrid system, we identified a novel human protein, ENX-1, which interacts specifically with Vav both in vitro and in vivo. ENX-1 represents the human homolog of the Drosophila Enhancer of zeste gene, a member of the Polycomb group of genes, which are transcriptional regulators of homeobox gene expression. Interaction with ENX-1 suggests that Vav functions as an upstream element in the transcriptional regulation of homeobox genes, known to be important effectors in the hematopoietic system.


2021 ◽  
Author(s):  
Bohm Lee ◽  
Yeonsoo Oh ◽  
Eunhye Cho ◽  
Aaron DiAntonio ◽  
Valeria Cavalli ◽  
...  

DLK is a key regulator of axon regeneration and degeneration in response to neuronal injury. To understand the molecular mechanisms controlling the DLK function, we performed yeast two-hybrid screening analysis and identified FKBPL as a DLK-binding protein that bound to the kinase domain and inhibited the kinase enzymatic activity of DLK. FKBPL regulated DLK stability through ubiquitin-dependent DLK degradation. We tested other members in the FKBP protein family and found that FKBP8 also induced DLK degradation as FKBPL did. We found that Lysine 271 residue in the kinase domain of DLK was a major site of ubiquitination and SUMO3-conjugation and responsible for FKBP8-mediated degradation. In vivo overexpression of FKBP8 delayed progression of axon degeneration and neuronal death following axotomy in sciatic and optic nerves, respectively, although axon regeneration efficiency was not enhanced. This research identified FKBPL and FKBP8 as new DLK-interacting proteins that regulated DLK stability by MG-132 or bafilomycin A1-sensitive protein degradation.


2005 ◽  
Vol 102 (46) ◽  
pp. 16729-16734 ◽  
Author(s):  
F. Vignols ◽  
C. Brehelin ◽  
Y. Surdin-Kerjan ◽  
D. Thomas ◽  
Y. Meyer

2006 ◽  
Vol 26 (6) ◽  
pp. 2360-2372 ◽  
Author(s):  
Seema Paliwal ◽  
Sandhya Pande ◽  
Ramesh C. Kovi ◽  
Norman E. Sharpless ◽  
Nabeel Bardeesy ◽  
...  

ABSTRACT ARF encodes a potent tumor suppressor that antagonizes MDM2, a negative regulator of p53. ARF also suppresses the proliferation of cells lacking p53, and loss of ARF in p53-null mice, compared with ARF or p53 singly null mice, results in a broadened tumor spectrum and decreased tumor latency. To investigate the mechanism of p53-independent tumor suppression by ARF, potential interacting proteins were identified by yeast two-hybrid screen. The antiapoptotic transcriptional corepressor C-terminal binding protein 2 (CtBP2) was identified, and ARF interactions with both CtBP1 and CtBP2 were confirmed in vitro and in vivo. Interaction with ARF resulted in proteasome-dependent CtBP degradation. Both ARF-induced CtBP degradation and CtBP small interfering RNA led to p53-independent apoptosis in colon cancer cells. ARF induction of apoptosis was dependent on its ability to interact with CtBP, and reversal of ARF-induced CtBP depletion by CtBP overexpression abrogated ARF-induced apoptosis. CtBP proteins represent putative targets for p53-independent tumor suppression by ARF.


Author(s):  
Orsolya Frittmann ◽  
Vamsi K Gali ◽  
Miklos Halmai ◽  
Robert Toth ◽  
Zsuzsanna Gyorfy ◽  
...  

Abstract DNA damages that hinder the movement of the replication complex can ultimately lead to cell death. To avoid that, cells possess several DNA damage bypass mechanisms. The Rad18 ubiquitin ligase controls error-free and mutagenic pathways that help the replication complex to bypass DNA lesions by monoubiquitylating PCNA at stalled replication forks. In Saccharomyces cerevisiae, two of the Rad18 governed pathways are activated by monoubiquitylated PCNA and they involve translesion synthesis polymerases, whereas a third pathway needs subsequent polyubiquitylation of the same PCNA residue by another ubiquitin ligase the Rad5 protein, and it employs template switching. The goal of this study was to dissect the regulatory role of the multidomain Rad18 in DNA damage bypass using a structure-function based approach. Investigating deletion and point mutant RAD18 variants in yeast genetic and yeast two-hybrid assays we show that the Zn-finger of Rad18 mediates its interaction with Rad5, and the N-terminal adjacent region is also necessary for Rad5 binding. Moreover, results of the yeast two-hybrid and in vivo ubiquitylation experiments raise the possibility that direct interaction between Rad18 and Rad5 might not be necessary for the function of the Rad5 dependent pathway. The presented data also reveal that yeast Rad18 uses different domains to mediate its association with itself and with Rad5. Our results contribute to better understanding of the complex machinery of DNA damage bypass pathways.


2003 ◽  
Vol 23 (19) ◽  
pp. 6944-6957 ◽  
Author(s):  
Nickolai A. Barlev ◽  
Alexander V. Emelyanov ◽  
Paola Castagnino ◽  
Philip Zegerman ◽  
Andrew J. Bannister ◽  
...  

ABSTRACT In yeast, the transcriptional adaptor yeast Ada2 (yAda2) is a part of the multicomponent SAGA complex, which possesses histone acetyltransferase activity through action of the yGcn5 catalytic enzyme. yAda2, among several SAGA proteins, serves to recruit SAGA to genes via interactions with promoter-bound transcription factors. Here we report identification of a new human Ada2 homologue, hAda2β. Ada2β differs both biochemically and functionally from the previously characterized hAda2α, which is a stable component of the human PCAF (human Gcn5 homologue) acetylase complex. Ada2β, relative to Ada2α, interacted selectively, although not stably, with the Gcn5-containing histone acetylation complex TFTC/STAGA. In addition, Ada2β interacted with Baf57 (a component of the human Swi/Snf complex) in a yeast two-hybrid screen and associated with human Swi/Snf in vitro. In functional assays, hAda2β (but not Ada2α), working in concert with Gcn5 (but not PCAF) or Brg1 (the catalytic component of hSwi/Snf complex), increased transcription via the B-cell-specific transcription factor Pax5/BSAP. These findings support the view that Gcn5 and PCAF have distinct roles in vivo and suggest a new mechanism of coactivator function, in which a single adaptor protein (Ada2β) can coordinate targeting of both histone acetylation and chromatin remodeling activities.


2001 ◽  
Vol 183 (4) ◽  
pp. 1423-1433 ◽  
Author(s):  
Susan R. Heimer ◽  
Harry L. T. Mobley

ABSTRACT Proteus mirabilis, a gram-negative bacterium associated with complicated urinary tract infections, produces a metalloenzyme urease which hydrolyzes urea to ammonia and carbon dioxide. The apourease is comprised of three structural subunits, UreA, UreB, and UreC, assembled as a homotrimer of individual UreABC heterotrimers (UreABC)3. To become catalytically active, apourease acquires divalent nickel ions through a poorly understood process involving four accessory proteins, UreD, UreE, UreF, and UreG. While homologues of UreD, UreF, and UreG have been copurified with apourease, it remains unclear specifically how these polypeptides associate with the apourease or each other. To identify interactions among P. mirabilis accessory proteins, in vitro immunoprecipitation and in vivo yeast two-hybrid assays were employed. A complex containing accessory protein UreD and structural protein UreC was isolated by immunoprecipitation and characterized with immunoblots. This association occurs independently of coaccessory proteins UreE, UreF, and UreG and structural protein UreA. In a yeast two-hybrid screen, UreD was found to directly interact in vivo with coaccessory protein UreF. Unique homomultimeric interactions of UreD and UreF were also detected in vivo. To substantiate the study of urease proteins with a yeast two-hybrid assay, previously described UreE dimers and homomultimeric UreA interactions among apourease trimers were confirmed in vivo. Similarly, a known structural interaction involving UreA and UreC was also verified. This report suggests that in vivo, P. mirabilis UreD may be important for recruitment of UreF to the apourease and that crucial homomultimeric associations occur among these accessory proteins.


2005 ◽  
Vol 79 (18) ◽  
pp. 11824-11836 ◽  
Author(s):  
Mingzhou Chen ◽  
Jean-Claude Cortay ◽  
Ian R. Logan ◽  
Vasileia Sapountzi ◽  
Craig N. Robson ◽  
...  

ABSTRACT Using a C-terminal domain (PCT) of the measles virus (MV) phosphoprotein (P protein) as bait in a yeast two-hybrid screen, a cDNA identical to the recently described human p53-induced-RING-H2 (hPIRH2) cDNA was isolated. A glutathione S-transferase-hPIRH2 fusion protein expressed in bacteria was able to pull down P protein when mixed with an extract from P-expressing HeLa cells in vitro, and myc-tagged hPIRH2 could be reciprocally coimmunoprecipitated with MV P protein from human cells. Additionally, immunoprecipitation experiments demonstrated that hPIRH2-myc, MV P, and nucleocapsid (N) proteins form a ternary complex. The hPIRH2 binding site was mapped to the C-terminal X domain region of the P protein by using a yeast two-hybrid assay. The PCT binding site was mapped on hPIRH2 by using a novel yeast two-hybrid tagged PCR approach and by coimmunoprecipitation of hPIRH2 cysteine mutants and mouse/human PIRH2 chimeras. The hPIRH2 C terminus could mediate the interaction with MV P which was favored by the RING-H2 motif. When coexpressed with an enhanced green fluorescent protein-tagged hPIRH2 protein, MV P alone or in a complex with MV N was able to redistribute hPIRH2 to outside the nucleus, within intracellular aggregates. Finally, MV P efficiently stabilized hPIRH2-myc expression and prevented its ubiquitination in vivo but had no effect on the stability or ubiquitination of an alternative ubiquitin E3 ligase, Mdm2. Thus, MV P protein is the first protein from a pathogen that is able to specifically interact with and stabilize the ubiquitin E3 ligase hPIRH2 by preventing its ubiquitination.


2000 ◽  
Vol 350 (3) ◽  
pp. 741-746 ◽  
Author(s):  
Julian GRUSOVIN ◽  
Violet STOICHEVSKA ◽  
Keith H. GOUGH ◽  
Katrina NUNAN ◽  
Colin W. WARD ◽  
...  

munc18c is a critical protein involved in trafficking events associated with syntaxin 4 and which also mediates inhibitory effects on vesicle docking and/or fusion. To investigate the domains of munc18c responsible for its interaction with syntaxin 4, fragments of munc18c were generated and their interaction with syntaxin 4 examined in vivo by the yeast two-hybrid assay. In vitro protein–protein interaction studies were then used to confirm that the interaction between the proteins was direct. Full-length munc18c1–592, munc18c1–139 and munc18c1–225, but not munc18c226–592, munc18c1–100, munc18c43–139 or munc18c66–139, interacted with the cytoplasmic portion of syntaxin 4, Stx42–273, as assessed by yeast two-hybrid assay of growth on nutritionally deficient media and by β-galactosidase reporter induction. The N-terminal predicted helix-a-helix-b-helix-c region of syntaxin 4, Stx429–157, failed to interact with full-length munc18c1–592, indicating that a larger portion of syntaxin 4 is necessary for the interaction. The yeast two-hybrid results were confirmed by protein–protein interaction studies between Stx42–273 and glutathione S-transferase fusion proteins of munc18c. Full-length munc18c1–592, munc18c1–139 and munc18c1–225 interacted with Stx42–273 whereas munc18c1–100 did not, consistent with the yeast two-hybrid data. These data thus identify a region of munc18c between residues 1 and 139 as a minimal domain for its interaction with syntaxin 4.


Sign in / Sign up

Export Citation Format

Share Document