scholarly journals Mutant Huntingtin Impairs Axonal Trafficking in Mammalian Neurons In Vivo and In Vitro

2004 ◽  
Vol 24 (18) ◽  
pp. 8195-8209 ◽  
Author(s):  
Eugenia Trushina ◽  
Roy B. Dyer ◽  
John D. Badger ◽  
Daren Ure ◽  
Lars Eide ◽  
...  

ABSTRACT Recent data in invertebrates demonstrated that huntingtin (htt) is essential for fast axonal trafficking. Here, we provide direct and functional evidence that htt is involved in fast axonal trafficking in mammals. Moreover, expression of full-length mutant htt (mhtt) impairs vesicular and mitochondrial trafficking in mammalian neurons in vitro and in whole animals in vivo. Particularly, mitochondria become progressively immobilized and stop more frequently in neurons from transgenic animals. These defects occurred early in development prior to the onset of measurable neurological or mitochondrial abnormalities. Consistent with a progressive loss of function, wild-type htt, trafficking motors, and mitochondrial components were selectively sequestered by mhtt in human Huntington's disease-affected brain. Data provide a model for how loss of htt function causes toxicity; mhtt-mediated aggregation sequesters htt and components of trafficking machinery leading to loss of mitochondrial motility and eventual mitochondrial dysfunction.

2019 ◽  
Vol 116 (50) ◽  
pp. 25322-25328 ◽  
Author(s):  
Yi Liu ◽  
Xiaopin Ma ◽  
Hisashi Fujioka ◽  
Jun Liu ◽  
Shengdi Chen ◽  
...  

Loss-of-function mutations in DJ-1 are associated with autosomal recessive early onset Parkinson’s disease (PD), yet the underlying pathogenic mechanism remains elusive. Here we demonstrate that DJ-1 localized to the mitochondria-associated membrane (MAM) both in vitro and in vivo. In fact, DJ-1 physically interacts with and is an essential component of the IP3R3-Grp75-VDAC1 complexes at MAM. Loss of DJ-1 disrupted the IP3R3-Grp75-VDAC1 complex and led to reduced endoplasmic reticulum (ER)-mitochondria association and disturbed function of MAM and mitochondria in vitro. These deficits could be rescued by wild-type DJ-1 but not by the familial PD-associated L166P mutant which had demonstrated reduced interaction with IP3R3-Grp75. Furthermore, DJ-1 ablation disturbed calcium efflux-induced IP3R3 degradation after carbachol treatment and caused IP3R3 accumulation at the MAM in vitro. Importantly, similar deficits in IP3R3-Grp75-VDAC1 complexes and MAM were found in the brain of DJ-1 knockout mice in vivo. The DJ-1 level was reduced in the substantia nigra of sporadic PD patients, which was associated with reduced IP3R3-DJ-1 interaction and ER-mitochondria association. Together, these findings offer insights into the cellular mechanism in the involvement of DJ-1 in the regulation of the integrity and calcium cross-talk between ER and mitochondria and suggests that impaired ER-mitochondria association could contribute to the pathogenesis of PD.


1998 ◽  
Vol 9 (2) ◽  
pp. 421-435 ◽  
Author(s):  
Laura A. Rudolph-Owen ◽  
Paul Cannon ◽  
Lynn M. Matrisian

To examine the role of matrilysin (MAT), an epithelial cell-specific matrix metalloproteinase, in the normal development and function of reproductive tissues, we generated transgenic animals that overexpress MAT in several reproductive organs. Three distinct forms of human MAT (wild-type, active, and inactive) were placed under the control of the murine mammary tumor virus promoter/enhancer. Although wild-type, active, and inactive forms of the human MAT protein could be produced in an in vitro culture system, mutations of the MAT cDNA significantly decreased the efficiency with which the MAT protein was produced in vivo. Therefore, animals carrying the wild-type MAT transgene that expressed high levels of human MAT in vivo were further examined. Mammary glands from female transgenic animals were morphologically normal throughout mammary development, but displayed an increased ability to produce β-casein protein in virgin animals. In addition, beginning at approximately 8 mo of age, the testes of male transgenic animals became disorganized with apparent disintegration of interstitial tissue that normally surrounds the seminiferous tubules. The disruption of testis morphology was concurrent with the onset of infertility. These results suggest that overexpression of the matrix-degrading enzyme MAT alters the integrity of the extracellular matrix and thereby induces cellular differentiation and cellular destruction in a tissue-specific manner.


2020 ◽  
Vol 12 (570) ◽  
pp. eaba1871
Author(s):  
Selene Lomoio ◽  
Rachel Willen ◽  
WonHee Kim ◽  
Kevin Z. Ho ◽  
Edward K. Robinson ◽  
...  

Axonal dystrophy, indicative of perturbed axonal transport, occurs early during Alzheimer’s disease (AD) pathogenesis. Little is known about the mechanisms underlying this initial sign of the pathology. This study proves that Golgi-localized γ-ear-containing ARF binding protein 3 (GGA3) loss of function, due to Gga3 genetic deletion or a GGA3 rare variant that cosegregates with late-onset AD, disrupts the axonal trafficking of the β-site APP-cleaving enzyme 1 (BACE1) resulting in its accumulation in axonal swellings in cultured neurons and in vivo. We show that BACE pharmacological inhibition ameliorates BACE1 axonal trafficking and diminishes axonal dystrophies in Gga3 null neurons in vitro and in vivo. These data indicate that axonal accumulation of BACE1 engendered by GGA3 loss of function results in local toxicity leading to axonopathy. Gga3 deletion exacerbates axonal dystrophies in a mouse model of AD before β-amyloid (Aβ) deposition. Our study strongly supports a role for GGA3 in AD pathogenesis, where GGA3 loss of function triggers BACE1 axonal accumulation independently of extracellular Aβ, and initiates a cascade of events leading to the axonal damage distinctive of the early stage of AD.


Development ◽  
1994 ◽  
Vol 120 (12) ◽  
pp. 3595-3603 ◽  
Author(s):  
C.V. Cabrera ◽  
M.C. Alonso ◽  
H. Huikeshoven

The pattern of adult sensilla in Drosophila is established by the dosage-sensitive interaction of two antagonistic groups of genes. Sensilla development is promoted by members of the achaete-scute complex and the daughterless gene whereas it is suppressed by whereas extramacrochaete (emc) and hairy. All these genes encode helix-loop-helix proteins. The products of the achaete-scute complex and daughterless interact to form heterodimers able to activate transcription. In this report, we show that (1) extra-macrochaete forms heterodimers with the achaete, scute, lethal of scute and daughterless products; (2) extramacrochaete inhibits DNA-binding of Achaete, Scute and Lethal of Scute/Daughterless heterodimers and Daughterless homodimers and (3) extramacrochaete inhibits transcription activation by heterodimers in a yeast assay system. In addition, we have studied the expression patterns of scute in wild-type and extramacrochaete mutant imaginal discs. Expression of scute RNA during imaginal development occurs in groups of cells, but high levels of protein accumulate in the nuclei of only a subset of the RNA-expressing cells. The pattern is dynamic and results in a small number of protein-containing cells that correspond to sensillum precursors. extramacrochaete loss-of-function alleles develop extra sensilla and correspondingly display a larger number of cells with scute protein. These cells appear to arise from those that in the wild type already express scute RNA; hence, extramacrochaete is a repressor of scute function whose action may take place post-transcriptionally.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 394-394
Author(s):  
Lurong Lian ◽  
Yanfeng Wang ◽  
Xinsheng Chen ◽  
Tami Bach ◽  
Laurie Lenox ◽  
...  

Abstract Pleckstrin is a 40 kDa phosphoprotein containing amino- and carboxyl-terminal Pleckstrin Homology (PH) domains separated by a DEP domain. Pleckstrin’s expression is restricted to platelets and leukocytes, and represents approximately 1% of total cellular protein within these cells. Following platelet and leukocyte activation, PKC rapidly phosphorylates pleckstrin inducing it to bind membrane bound phospholipids such as phosphatidylinositol 4,5 bisphosphate (PIP2). Heterologously expressed phosphorylated pleckstrin colocalized with integrins and induces cytoskeletal reorganization. To better define the role of pleckstrin in vivo, we introduced a loss-of-function mutation into the murine pleckstrin gene. Pleckstrin-null mice were present in offspring at a frequency consistent with a Mendelian inheritance pattern. Adult pleckstrin −/− mice had 32% lower platelet counts than their littermates, but exhibited no spontaneous hemorrhage. Given the role of PKC and phospholipid second messengers on cytoskeletal dynamics, and our observations of pleckstrin overexpression in cell lines, we analyzed whether loss of pleckstrin affected cell spreading. Pleckstrin −/− platelets spread extremely poorly upon immobilized fibrinogen, and rarely exhibited broad membrane extensions. Granulocytes from pleckstrin −/− mice also have a spreading defect, as well as impaired ability to generate reactive oxygen species in the response to TNFα. Knockout B-cells, CD4-T-cells, and CD8-T-cells all migrated approximately 30% as efficiently as wild type cells in response to a gradient of SDF-1α in a transwell assay. These data suggest that loss of pleckstrin causes cytoskeletal defects in cells of multiple hematopoietic lineages. Analyzing whether this caused a functional defect, we found that pleckstrin −/− platelets exhibited a 22% dense- and 24% alpha-granule exocytosis defect, and a 35% defect in thrombin-induced calcium entry. In spite of these abnormalities, platelets changed shape and aggregated normally after stimulation with thrombin, ADP, or collagen in vitro. Pleckstrin knockout platelets did have a markedly impaired aggregation response following exposure to the PKC stimulant, PMA. This suggested that pleckstrin is a critical effector for PKC-mediated aggregation, but another pathway is able to compensate for this loss of pleckstrin following agonist stimulation. We reasoned that the alternative pathway might also utilize PIP2-dependent second messengers. Since the phosphorylation of PIP2 by PI3K generates second messengers that also contribute to platelet aggregation, we tested whether PI3K compensated for the loss of pleckstrin. We found that the PI3K inhibitor, LY294002 profoundly impaired the aggregation of pleckstrin knockout platelets in response to stimulation of the thrombin receptor. In contrast, the PI3K inhibitor minimally affected wild type platelets. This demonstrates that second messengers generated by PI3K are able to compensate for loss of pleckstrin. This also demonstrates that thrombin-induced platelet aggregation can be mediated by one of two parallel pathways, one involving PKC and pleckstrin, and the other involving PI3K. Together, our results show that pleckstrin is an essential component of PKC-mediated platelet activation and signals directed to the cytoskeleton.


2020 ◽  
Author(s):  
Jinlei Zhao ◽  
Shahista Nisa ◽  
Michael S. Donnenberg

AbstractType IV pili (T4Ps) are multifunctional protein fibers found in many bacteria and archaea. All T4P systems have an extension ATPase, which provides the energy required to push structural subunits out of the membrane. We previously reported that the BfpD T4P ATPase from enteropathogenic E. coli (EPEC) has the expected hexameric structure and ATPase activity, the latter enhanced by the presence of the N-terminal cytoplasmic domains of its partner proteins BfpC and BfpE. In this study, we further investigated the kinetics of the BfpD ATPase. Despite high purity of the proteins, the reported enhanced ATPase activity was found to be from (an) ATPase(s) contaminating the N-BfpC preparation. Furthermore, although two mutations in highly conserved bfpD sites led to loss of function in vivo, the purified mutant proteins retained some ATPase activity, albeit less than the wild-type protein. Therefore, the observed ATPase activity of BfpD was also affected by (a) contaminating ATPase(s). Expression of the mutant bfpD alleles did not interfere with BfpD function in bacteria that also expressed wild-type BfpD. However, a similar mutation of bfpF, which encodes the retraction ATPase, blocked the function of wild-type BfpF when both were present. These results highlight similarities and differences in function and activity of T4P extension and retraction ATPases in EPEC.


2016 ◽  
Vol 113 (39) ◽  
pp. 11010-11015 ◽  
Author(s):  
Jun Zhang ◽  
Jinshan Ella Lin ◽  
Chinchu Harris ◽  
Fernanda Campos Mastrotti Pereira ◽  
Fan Wu ◽  
...  

Tight homeostatic regulation of the phytohormone auxin [indole-3-acetic acid (IAA)] is essential to plant growth. Auxin biosynthetic pathways and the processes that inactivate auxin by conjugation to amino acids and sugars have been thoroughly characterized. However, the enzyme that catalyzes oxidation of IAA to its primary catabolite 2-oxindole-3-acetic acid (oxIAA) remains uncharacterized. Here, we show that DIOXYGENASE FOR AUXIN OXIDATION 1 (DAO1) catalyzes formation of oxIAA in vitro and in vivo and that this mechanism regulates auxin homeostasis and plant growth. Null dao1-1 mutants contain 95% less oxIAA compared with wild type, and complementation of dao1 restores wild-type oxIAA levels, indicating that DAO1 is the primary IAA oxidase in seedlings. Furthermore, dao1 loss of function plants have altered morphology, including larger cotyledons, increased lateral root density, delayed sepal opening, elongated pistils, and reduced fertility in the primary inflorescence stem. These phenotypes are tightly correlated with DAO1 spatiotemporal expression patterns as shown by DAO1pro:β-glucuronidase (GUS) activity and DAO1pro:YFP-DAO1 signals, and transformation with DAO1pro:YFP-DAO1 complemented the mutant phenotypes. The dominant dao1-2D mutant has increased oxIAA levels and decreased stature with shorter leaves and inflorescence stems, thus supporting DAO1 IAA oxidase function in vivo. A second isoform, DAO2, is very weakly expressed in seedling root apices. Together, these data confirm that IAA oxidation by DAO1 is the principal auxin catabolic process in Arabidopsis and that localized IAA oxidation plays a role in plant morphogenesis.


Blood ◽  
1996 ◽  
Vol 87 (8) ◽  
pp. 3117-3123 ◽  
Author(s):  
X Piao ◽  
A Bernstein

The murine W and Steel loci encode the Kit receptor tyrosine kinase and its ligand, Steel factor, respectively. Loss of function mutations at either the W or Sl loci lead to a variety of pleiotropic developmental defects, including mast cell deficiency and severe macrocytic anemia. In addition to these loss-of-function mutations, gain-of-function mutations in c-kit, leading to constitutive activation of the Kit receptor, have also been identified in both rodent and human mastocytomas. In this study, we have examined the transforming potential and biologic effects of a point mutation that results in substitution of the aspartic acid at codon 814 in the cytoplasmic kinase domain to tyrosine (D814Y) by introducing either wild-type (Kit) or mutant KitD814Y (KDY) cDNA into an interleukin-3-dependent mast cell line IC2. Stimulation of cells expressing the wild-type Kit receptor (IC2/Kit) with Steel factor in vitro resulted in a short-term growth response, whereas IC2/KDY cells were capable of sustained proliferation in a ligand-independent manner. In addition, expression of KDY resulted in the oncogenic transformation of IC2 cells, as determined by colony formation in vitro in the absence of exogenous growth factors and the formation of mastocytomas in vivo in syngeneic DBA/2 mice. Surprisingly, KDY expression in IC2 cells triggered dramatic changes in cell size and the extent of granulation. In addition, KDY induced the expression of mouse mast cell protease-4 (MMCP-4) and MMCP-6. In contrast, neither of these molecular or cellular changes was observed in IC2/Kit cells treated with Steel factor. These results show that the D814Y mutation in the cytoplasmic kinase domain of the Kit receptor induces ligand-independent mast cell growth in vitro, tumorigenicity in vivo, and mast cell differentiation.


2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Zixuan Lin ◽  
Chen Chen ◽  
Dongqin Yang ◽  
Jianqing Ding ◽  
Guanghui Wang ◽  
...  

AbstractParkinson’s disease (PD), one of the most common neurodegenerative disorders, is characterized by progressive neurodegeneration of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). DJ-1 acts essential roles in neuronal protection and anti-neuroinflammatory response, and its loss of function is tightly associated with a familial recessive form of PD. However, the molecular mechanism of DJ-1 involved in neuroinflammation is largely unclear. Here, we found that wild-type DJ-1, rather than the pathogenic L166P mutant DJ-1, directly binds to the subunit p65 of nuclear factor-κB (NF-κB) in the cytoplasm, and loss of DJ-1 promotes p65 nuclear translocation by facilitating the dissociation between p65 and NF-κB inhibitor α (IκBα). DJ-1 knockout (DJ-1−/−) mice exhibit more microglial activation compared with wild-type littermate controls, especially in response to lipopolysaccharide (LPS) treatment. In cellular models, knockdown of DJ-1 significantly upregulates the gene expression and increases the release of LPS-treated inflammatory cytokines in primary microglia and BV2 cells. Furthermore, DJ-1 deficiency in microglia significantly enhances the neuronal toxicity in response to LPS stimulus. In addition, pharmacological blockage of NF-κB nuclear translocation by SN-50 prevents microglial activation and alleviates the damage of DA neurons induced by microglial DJ-1 deficiency in vivo and in vitro. Thus, our data illustrate a novel mechanism by which DJ-1 facilitates the interaction between IκBα and p65 by binding to p65 in microglia, and thus repressing microglial activation and exhibiting the protection of DA neurons from neuroinflammation-mediated injury in PD.


2021 ◽  
Author(s):  
Gopinath Chattopadhyay ◽  
Jayantika Bhowmick ◽  
Kavyashree Manjunath ◽  
Shahbaz Ahmed ◽  
Parveen Goyal ◽  
...  

Most amino acid substitutions in a protein either lead to partial loss of function or are near neutral. Several studies have shown the existence of second-site mutations that can rescue defects caused by diverse loss of function mutations. Such global suppressor mutations are key drivers of protein evolution. However, the mechanisms responsible for such suppression remain poorly understood. To address this, we characterized multiple suppressor mutations both in isolation and in combination with inactive mutants. We examined five global suppressors of the bacterial toxin CcdB, the known M182T global suppressor of TEM-1 β-lactamase, the N239Y global suppressor of p53-DBD and three suppressors of the SARS-CoV-2 spike Receptor Binding Domain. The suppressors both alone, and in conjunction with inactive mutants, stabilise the protein both thermodynamically and kinetically in-vitro, predominantly through acceleration of the refolding rate parameters. When coupled to inactive mutants they promote increased in-vivo solubilities as well as regain-of-function phenotypes. Our study also demonstrates that the global suppressor approach can be used to consistently stabilise wild-type proteins, including for downstream translational applications.


Sign in / Sign up

Export Citation Format

Share Document