scholarly journals Activity of the Yap1 Transcription Factor in Saccharomyces cerevisiae Is Modulated by Methylglyoxal, a Metabolite Derived from Glycolysis

2004 ◽  
Vol 24 (19) ◽  
pp. 8753-8764 ◽  
Author(s):  
Kazuhiro Maeta ◽  
Shingo Izawa ◽  
Shoko Okazaki ◽  
Shusuke Kuge ◽  
Yoshiharu Inoue

ABSTRACT Methylglyoxal (MG) is synthesized during glycolysis, although it inhibits cell growth in all types of organisms. Hence, it has long been asked why such a toxic metabolite is synthesized in vivo. Glyoxalase I is a major enzyme detoxifying MG. Here we show that the Yap1 transcription factor, which is critical for the oxidative-stress response in Saccharomyces cerevisiae, is constitutively concentrated in the nucleus and activates the expression of its target genes in a glyoxalase I-deficient mutant. Yap1 contains six cysteine residues in two cysteine-rich domains (CRDs), i.e., three cysteine residues clustering near the N terminus (n-CRD) and the remaining three cysteine residues near the C terminus (c-CRD). We reveal that any of the three cysteine residues in the c-CRD is sufficient for MG to allow Yap1 to translocate into the nucleus and to activate the expression of its target gene. A Yap1 mutant possessing only one cysteine residue in the c-CRD but no cysteine in the n-CRD and deletion of the basic leucine zipper domain can concentrate in the nucleus with MG treatment. However, substitution of all the cysteine residues in Yap1 abolishes the ability of this transcription factor to concentrate in the nucleus following MG treatment. The redox status of Yap1 is substantially unchanged, and protein(s) interaction with Yap1 through disulfide bond is hardly detected in cells treated with MG. Collectively, neither intermolecular nor intramolecular disulfide bond formation seems to be involved in Yap1 activation by MG. Moreover, we show that nucleocytoplasmic localization of Yap1 closely correlates with growth phase and intracellular MG level. We propose a novel regulatory pathway underlying Yap1 activation by a natural metabolite in the cell.

2002 ◽  
Vol 22 (6) ◽  
pp. 1919-1925 ◽  
Author(s):  
Susanne C. Bleckmann ◽  
Julie A. Blendy ◽  
Dorothea Rudolph ◽  
A. Paula Monaghan ◽  
Wolfgang Schmid ◽  
...  

ABSTRACT Activating transcription factor 1 (ATF1), CREB, and the cyclic AMP (cAMP) response element modulatory protein (CREM), which constitute a subfamily of the basic leucine zipper transcription factors, activate gene expression by binding as homo- or heterodimers to the cAMP response element in regulatory regions of target genes. To investigate the function of ATF1 in vivo, we inactivated the corresponding gene by homologous recombination. In contrast to CREB-deficient mice, which suffer from perinatal lethality, mice lacking ATF1 do not exhibit any discernible phenotypic abnormalities. Since ATF1 and CREB but not CREM are strongly coexpressed during early mouse development, we generated mice deficient for both CREB and ATF1. ATF1−/− CREB−/− embryos die before implantation due to developmental arrest. ATF1+/− CREB−/− embryos display a phenotype of embryonic lethality around embryonic day 9.5 due to massive apoptosis. These results indicate that CREB and ATF1 act in concert to mediate signals essential for maintaining cell viability during early embryonic development.


2008 ◽  
Vol 28 (8) ◽  
pp. 2758-2770 ◽  
Author(s):  
Tae Yamamoto ◽  
Takafumi Suzuki ◽  
Akira Kobayashi ◽  
Junko Wakabayashi ◽  
Jon Maher ◽  
...  

ABSTRACT Keap1 and Cul3 constitute a unique ubiquitin E3 ligase that degrades Nrf2, a key activator of cytoprotective genes. Upon exposure to oxidants/electrophiles, the enzymatic activity of this ligase complex is inhibited and the complex fails to degrade Nrf2, resulting in the transcriptional activation of Nrf2 target genes. Keap1 possesses several reactive cysteine residues that covalently bond with electrophiles in vitro. To clarify the functional significance of each Keap1 cysteine residue under physiological conditions, we established a transgenic complementation rescue model. The transgenic expression of mutant Keap1(C273A) and/or Keap1(C288A) protein in Keap1 null mice failed to reverse constitutive Nrf2 activation, indicating that cysteine residues at positions 273 and 288 are essential for Keap1 to repress Nrf2 activity in vivo. In contrast, Keap1(C151S) retained repressor activity and mice expressing this molecule were viable. Mouse embryonic fibroblasts from Keap1(C151S) transgenic mice displayed decreased expression of Nrf2 target genes both before and after an electrophilic challenge, suggesting that Cys151 is important in facilitating Nrf2 activation. These results demonstrate critical roles of the cysteine residues in vivo in maintaining Keap1 function, such that Nrf2 is repressed under quiescent conditions and active in response to oxidants/electrophiles.


2020 ◽  
Author(s):  
Seungwoo Cha ◽  
Chang Pyo Hong ◽  
Hyun Ah Kang ◽  
Ji-Sook Hahn

Abstract Gcr1, an important transcription factor for glycolytic genes in Saccharomyces cerevisiae, was recently revealed to have two isoforms, Gcr1U and Gcr1S, produced from un-spliced and spliced transcripts, respectively. In this study, by generating strains expressing only Gcr1U or Gcr1S using the CRISPR/Cas9 system, we elucidate differential activation mechanisms of these two isoforms. The Gcr1U monomer forms an active complex with its coactivator Gcr2 homodimer, whereas Gcr1S acts as a homodimer without Gcr2. The USS domain, 55 residues at the N-terminus existing only in Gcr1U, inhibits dimerization of Gcr1U and even acts in trans to inhibit Gcr1S dimerization. The Gcr1S monomer inhibits the metabolic switch from fermentation to respiration by directly binding to the ALD4 promoter, which can be restored by overexpression of the ALD4 gene, encoding a mitochondrial aldehyde dehydrogenase required for ethanol utilization. Gcr1U and Gcr1S regulate almost the same target genes, but show unique activities depending on growth phase, suggesting that these isoforms play differential roles through separate activation mechanisms depending on environmental conditions.


1999 ◽  
Vol 19 (11) ◽  
pp. 7589-7599 ◽  
Author(s):  
Mariano Ubeda ◽  
Mario Vallejo ◽  
Joel F. Habener

ABSTRACT The transcription factor CHOP (C/EBP homologous protein 10) is a bZIP protein induced by a variety of stimuli that evoke cellular stress responses and has been shown to arrest cell growth and to promote programmed cell death. CHOP cannot form homodimers but forms stable heterodimers with the C/EBP family of activating transcription factors. Although initially characterized as a dominant negative inhibitor of C/EBPs in the activation of gene transcription, CHOP-C/EBP can activate certain target genes. Here we show that CHOP interacts with members of the immediate-early response, growth-promoting AP-1 transcription factor family, JunD, c-Jun, and c-Fos, to activate promoter elements in the somatostatin, JunD, and collagenase genes. The leucine zipper dimerization domain is required for interactions with AP-1 proteins and transactivation of transcription. Analyses by electrophoretic mobility shift assays and by an in vivo mammalian two-hybrid system for protein-protein interactions indicate that CHOP interacts with AP-1 proteins inside cells and suggest that it is recruited to the AP-1 complex by a tethering mechanism rather than by direct binding of DNA. Thus, CHOP not only is a negative or a positive regulator of C/EBP target genes but also, when tethered to AP-1 factors, can activate AP-1 target genes. These findings establish the existence of a new mechanism by which CHOP regulates gene expression when cells are exposed to cellular stress.


Blood ◽  
2005 ◽  
Vol 106 (6) ◽  
pp. 1938-1947 ◽  
Author(s):  
Tomohiko Tamura ◽  
Pratima Thotakura ◽  
Tetsuya S. Tanaka ◽  
Minoru S. H. Ko ◽  
Keiko Ozato

Abstract Interferon regulatory factor-8 (IRF-8)/interferon consensus sequence–binding protein (ICSBP) is a transcription factor that controls myeloid-cell development. Microarray gene expression analysis of Irf-8-/- myeloid progenitor cells expressing an IRF-8/estrogen receptor chimera (which differentiate into macrophages after addition of estradiol) was used to identify 69 genes altered by IRF-8 during early differentiation (62 up-regulated and 7 down-regulated). Among them, 4 lysosomal/endosomal enzyme-related genes (cystatin C, cathepsin C, lysozyme, and prosaposin) did not require de novo protein synthesis for induction, suggesting that they were direct targets of IRF-8. We developed a reporter assay system employing a self-inactivating retrovirus and analyzed the cystatin C and cathepsin C promoters. We found that a unique cis element mediates IRF-8–induced activation of both promoters. Similar elements were also found in other IRF-8 target genes with a consensus sequence (GAAANN[N]GGAA) comprising a core IRF-binding motif and an Ets-binding motif; this sequence is similar but distinct from the previously reported Ets/IRF composite element. Chromatin immunoprecipitation assays demonstrated that IRF-8 and the PU.1 Ets transcription factor bind to this element in vivo. Collectively, these data indicate that IRF-8 stimulates transcription of target genes through a novel cis element to specify macrophage differentiation.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2149
Author(s):  
Nkulu Kabange Rolly ◽  
Byung-Wook Yun

Nitrogen (N) is an essential macronutrient, which contributes substantially to the growth and development of plants. In the soil, nitrate (NO3) is the predominant form of N available to the plant and its acquisition by the plant involves several NO3 transporters; however, the mechanism underlying their involvement in the adaptive response under abiotic stress is poorly understood. Initially, we performed an in silico analysis to identify potential binding sites for the basic leucine zipper 62 transcription factor (AtbZIP62 TF) in the promoter of the target genes, and constructed their protein–protein interaction networks. Rather than AtbZIP62, results revealed the presence of cis-regulatory elements specific to two other bZIP TFs, AtbZIP18 and 69. A recent report showed that AtbZIP62 TF negatively regulated AtbZIP18 and AtbZIP69. Therefore, we investigated the transcriptional regulation of AtNPF6.2/NRT1.4 (low-affinity NO3 transporter), AtNPF6.3/NRT1.1 (dual-affinity NO3 transporter), AtNRT2.1 and AtNRT2.2 (high-affinity NO3 transporters), and AtGLU1 and AtGLU2 (both encoding glutamate synthase) in response to drought stress in Col-0. From the perspective of exploring the transcriptional interplay of the target genes with AtbZIP62 TF, we measured their expression by qPCR in the atbzip62 (lacking the AtbZIP62 gene) under the same conditions. Our recent study revealed that AtbZIP62 TF positively regulates the expression of AtPYD1 (Pyrimidine 1, a key gene of the de novo pyrimidine biosynthesis pathway know to share a common substrate with the N metabolic pathway). For this reason, we included the atpyd1-2 mutant in the study. Our findings revealed that the expression of AtNPF6.2/NRT1.4, AtNPF6.3/NRT1.1 and AtNRT2.2 was similarly regulated in atzbip62 and atpyd1-2 but differentially regulated between the mutant lines and Col-0. Meanwhile, the expression pattern of AtNRT2.1 in atbzip62 was similar to that observed in Col-0 but was suppressed in atpyd1-2. The breakthrough is that AtNRT2.2 had the highest expression level in Col-0, while being suppressed in atbzip62 and atpyd1-2. Furthermore, the transcript accumulation of AtGLU1 and AtGLU2 showed differential regulation patterns between Col-0 and atbzip62, and atpyd1-2. Therefore, results suggest that of all tested NO3 transporters, AtNRT2.2 is thought to play a preponderant role in contributing to NO3 transport events under the regulatory influence of AtbZIP62 TF in response to drought stress.


2010 ◽  
Vol 9 (4) ◽  
pp. 514-531 ◽  
Author(s):  
Barbara Heise ◽  
Julia van der Felden ◽  
Sandra Kern ◽  
Mario Malcher ◽  
Stefan Brückner ◽  
...  

ABSTRACT In Saccharomyces cerevisiae, the TEA transcription factor Tec1 is known to regulate target genes together with a second transcription factor, Ste12. Tec1-Ste12 complexes can activate transcription through Tec1 binding sites (TCSs), which can be further combined with Ste12 binding sites (PREs) for cooperative DNA binding. However, previous studies have hinted that Tec1 might regulate transcription also without Ste12. Here, we show that in vivo, physiological amounts of Tec1 are sufficient to stimulate TCS-mediated gene expression and transcription of the FLO11 gene in the absence of Ste12. In vitro, Tec1 is able to bind TCS elements with high affinity and specificity without Ste12. Furthermore, Tec1 contains a C-terminal transcriptional activation domain that confers Ste12-independent activation of TCS-regulated gene expression. On a genome-wide scale, we identified 302 Tec1 target genes that constitute two distinct classes. A first class of 254 genes is regulated by Tec1 in a Ste12-dependent manner and is enriched for genes that are bound by Tec1 and Ste12 in vivo. In contrast, a second class of 48 genes can be regulated by Tec1 independently of Ste12 and is enriched for genes that are bound by the stress transcription factors Yap6, Nrg1, Cin5, Skn7, Hsf1, and Msn4. Finally, we find that combinatorial control by Tec1-Ste12 complexes stabilizes Tec1 against degradation. Our study suggests that Tec1 is able to regulate TCS-mediated gene expression by Ste12-dependent and Ste12-independent mechanisms that enable promoter-specific transcriptional control.


1997 ◽  
Vol 17 (2) ◽  
pp. 819-832 ◽  
Author(s):  
M H Kuo ◽  
E T Nadeau ◽  
E J Grayhack

The Saccharomyces cerevisiae Mcm1 protein is an essential multifunctional transcription factor which is highly homologous to human serum response factor. Mcm1 protein acts on a large number of distinctly regulated genes: haploid cell-type-specific genes, G2-cell-cycle-regulated genes, pheromone-induced genes, arginine metabolic genes, and genes important for cell wall and cell membrane function. We show here that Mcm1 protein is phosphorylated in vivo. Several (more than eight) isoforms of Mcm1 protein, resolved by isoelectric focusing, are present in vivo; two major phosphorylation sites lie in the N-terminal 17 amino acids immediately adjacent to the conserved MADS box DNA-binding domain. The implications of multiple species of Mcm1, particularly the notion that a unique Mcm1 isoform could be required for regulation of a specific set of Mcm1's target genes, are discussed. We also show here that Mcm1 plays an important role in the response to stress caused by NaCl. G. Yu, R. J. Deschenes, and J. S. Fassler (J. Biol. Chem. 270:8739-8743, 1995) showed that Mcm1 function is affected by mutations in the SLN1 gene, a signal transduction component implicated in the response to osmotic stress. We find that mcm1 mutations can confer either reduced or enhanced survival on high-salt medium; deletion of the N terminus or mutation in the primary phosphorylation site results in impaired growth on high-salt medium. Furthermore, Mcm1 protein is a target of a signal transduction system responsive to osmotic stress: a new isoform of Mcm1 is induced by NaCl or KCl; this result establishes that Mcm1 itself is regulated.


2004 ◽  
Vol 24 (7) ◽  
pp. 2915-2922 ◽  
Author(s):  
Jane Goodall ◽  
Silvia Martinozzi ◽  
Timothy J. Dexter ◽  
Delphine Champeval ◽  
Suzanne Carreira ◽  
...  

ABSTRACT Constitutive activation of the Wnt/β-catenin signaling pathway is a notable feature of a large minority of cases of malignant melanoma, an aggressive and increasingly common cancer. The identification of target genes downstream from this pathway is therefore crucial to our understanding of the disease. The POU domain transcription factor Brn-2 has been implicated in control of proliferation and melanoma survival, and its expression is strongly upregulated in melanoma. We show here that in vivo Brn-2 is expressed in melanocytes but not in embryonic day 11.5 melanoblasts and that its expression is directly controlled by the Wnt/β-catenin signaling pathway in melanoma cell lines and in transgenic mice. Moreover, silent interfering RNA-mediated inhibition of Brn-2 expression in melanoma cells overexpressing β-catenin results in significantly decreased proliferation. These results, together with the observation that BRAF signaling also induces Brn-2 expression, reveal that Brn-2 is a focus for the convergence of two key melanoma-associated signaling pathways that are linked to cell proliferation.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 776-776
Author(s):  
Zhongfa Yang ◽  
Alan G. Rosmarin

Abstract GABP is an ets transcription factor that regulates transcription of key myeloid genes, including CD18 (beta2 leukocyte integrin), neutrophil elastase, lysozyme, and other key mediators of the inflammatory response; it is also known to regulate important cell cycle control genes. GABP consists of two distinct and unrelated proteins that, together, form a functional transcription factor complex. GABPalpha (GABPa) is an ets protein that binds to DNA; it forms a tetrameric complex by recruiting its partner, GABPbeta (GABPb), which contains the transactivation domain. GABPa is a single copy gene in both the human and murine genomes and it is the only protein that can recruit GABPb to DNA. We cloned GABPa from a murine genomic BAC library and prepared a targeting vector in which exon 9 (which encodes the GABPa ets domain) was flanked by loxP (floxed) recombination sites. The targeting construct was electroporated into embryonic stem cells, homologous recombinants were implanted into pseudopregnant mice, heterozygous floxed GABPa mice were identified, and intercrossing yielded expected Mendelian ratios of wild type, heterozygous, and homozygous floxed GABPa mice. Breeding of heterozygous floxed GABPa mice to CMV-Cre mice (which express Cre recombinase in all tissues) yielded expected numbers of hemizygous mice (only one intact GABPa allele), but no nullizygous (GABPa−/−) mice among 64 pups; we conclude that homozygous deletion of GABPa causes an embryonic lethal defect. To determine the effect of GABPa deletion on myeloid cell development, we bred heterozygous and homozygous floxed mice to LysMCre mice, which express Cre only in myeloid cells. These mice had a normal complement of myeloid cells but, unexpectedly, PCR indicated that their Gr1+ myeloid cells retained an intact (undeleted) floxed GABPa allele. We detected similar numbers of in vitro myeloid colonies from bone marrow of wild type, heterozygous floxed, and homozygous floxed progeny of LysMCre matings. However, PCR of twenty individual in vitro colonies from homozygous floxed mice indicated that they all retained an intact floxed allele. Breeding of floxed GABPa/LysMCre mice with hemizygous mice indicated that retention of a floxed allele was not due to incomplete deletion by LysMCre; rather, it appears that only myeloid cells that retain an intact GABPa allele can survive to mature in vitro or in vivo. We prepared murine embryonic fibroblasts from homozygous floxed mice and efficiently deleted GABPa in vitro. We found striking abnormalities in proliferation and G1/S phase arrest. We used quantitative RT-PCR to identify mechanisms that account for the altered growth of GABPa null cells. We found dramatically reduced expression of known GABP target genes that regulate DNA synthesis and cell cycle that appear to account for the proliferative defect. We conclude that GABPa is required for growth and maturation of myeloid cells and we identified downstream targets that may account for their failure to proliferate and mature in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document