scholarly journals Functional Analysis of the Roles of Posttranslational Modifications at the p53 C Terminus in Regulating p53 Stability and Activity

2005 ◽  
Vol 25 (13) ◽  
pp. 5389-5395 ◽  
Author(s):  
Lijin Feng ◽  
Tongxiang Lin ◽  
Hiroaki Uranishi ◽  
Wei Gu ◽  
Yang Xu

ABSTRACT Posttranslational modification of the tumor suppressor p53 plays important roles in regulating its stability and activity. Six lysine residues at the p53 C terminus can be posttranslationally modified by various mechanisms, including acetylation, ubiquitination, neddylation, methylation, and sumoylation. Previous cell line transfection studies show that ubiquitination of these lysine residues is required for ubiquitin-dependent degradation of p53. In addition, biochemical and cell line studies suggested that p53 acetylation at the C terminus might stabilize p53 and activate its transcriptional activities. To investigate the physiological functional outcome of these C-terminal modifications in regulating p53 stability and activity, we introduced missense mutations (lysine to arginine) at the six lysine residues (K6R) into the endogenous p53 gene in mouse embryonic stem (ES) cells. The K6R mutation prevents all posttranslational modifications at these sites but conserves the structure of p53. In contrast to conclusions of previous studies, analysis of p53 stability in K6R ES cells, mouse embryonic fibroblasts, and thymocytes showed normal p53 stabilization in K6R cells both before and after DNA damage, indicating that ubiquitination of these lysine residues is not required for efficient p53 degradation. However, p53-dependent gene expression was impaired in K6R ES cells and thymocytes in a promoter-specific manner after DNA damage, indicating that the net outcome of the posttranslational modifications at the C terminus is to activate p53 transcriptional activities after DNA damage.

2002 ◽  
Vol 22 (8) ◽  
pp. 2441-2449 ◽  
Author(s):  
Zhiqun Wu ◽  
John Earle ◽  
Shin'ichi Saito ◽  
Carl W. Anderson ◽  
Ettore Appella ◽  
...  

ABSTRACT Recent studies have suggested that phosphorylation of human p53 at Ser20 is important for stabilizing p53 in response to DNA damage through disruption of the interaction between MDM2 and p53. To examine the requirement for this DNA damage-induced phosphorylation event in a more physiological setting, we introduced a missense mutation into the endogenous p53 gene of mouse embryonic stem (ES) cells that changes serine 23 (S23), the murine equivalent of human serine 20, to alanine (A). Murine embryonic fibroblasts harboring the p53S23A mutation accumulate p53 as well as p21 and Mdm2 proteins to normal levels after DNA damage. Furthermore, ES cells and thymocytes harboring the p53S23A mutation also accumulate p53 protein to wild-type levels and undergo p53-dependent apoptosis similarly to wild-type cells after DNA damage. Therefore, phosphorylation of murine p53 at Ser23 is not required for p53 responses to DNA damage induced by UV and ionizing radiation treatment.


2006 ◽  
Vol 26 (18) ◽  
pp. 6859-6869 ◽  
Author(s):  
Connie Chao ◽  
Zhiqun Wu ◽  
Sharlyn J. Mazur ◽  
Helena Borges ◽  
Matteo Rossi ◽  
...  

ABSTRACT Posttranslational modifications of p53, including phosphorylation and acetylation, play important roles in regulating p53 stability and activity. Mouse p53 is acetylated at lysine 317 by PCAF and at multiple lysine residues at the extreme carboxyl terminus by CBP/p300 in response to genotoxic and some nongenotoxic stresses. To determine the physiological roles of p53 acetylation at lysine 317, we introduced a Lys317-to-Arg (K317R) missense mutation into the endogenous p53 gene of mice. p53 protein accumulates to normal levels in p53K317R mouse embryonic fibroblasts (MEFs) and thymocytes after DNA damage. While p53-dependent gene expression is largely normal in p53K317R MEFs after various types of DNA damage, increased p53-dependent apoptosis was observed in p53K317R thymocytes, epithelial cells from the small intestine, and cells from the retina after ionizing radiation (IR) as well as in E1A/Ras-expressing MEFs after doxorubicin treatment. Consistent with these findings, p53-dependent expression of several proapoptotic genes was significantly increased in p53K317R thymocytes after IR. These findings demonstrate that acetylation at lysine 317 negatively regulates p53 apoptotic activities after DNA damage.


1997 ◽  
Vol 17 (3) ◽  
pp. 1642-1651 ◽  
Author(s):  
M J Weiss ◽  
C Yu ◽  
S H Orkin

The zinc finger transcription factor GATA-1 is essential for erythropoiesis. In its absence, committed erythroid precursors arrest at the proerythroblast stage of development and undergo apoptosis. To study the function of GATA-1 in an erythroid cell environment, we generated an erythroid cell line from in vitro-differentiated GATA-1- murine embryonic stem (ES) cells. These cells, termed G1E for GATA-1- erythroid, proliferate as immature erythroblasts yet complete differentiation upon restoration of GATA-1 function. We used rescue of terminal erythroid maturation in G1E cells as a stringent cellular assay system in which to evaluate the functional relevance of domains of GATA-1 previously characterized in nonhematopoietic cells. At least two major differences were established between domains required in G1E cells and those required in nonhematopoietic cells. First, an obligatory transactivation domain defined in conventional nonhematopoietic cell transfection assays is dispensable for terminal erythroid maturation. Second, the amino (N) zinc finger, which is nonessential for binding to the vast majority of GATA DNA motifs, is strictly required for GATA-1-mediated erythroid differentiation. Our data lead us to propose a model in which a nuclear cofactor(s) interacting with the N-finger facilitates transcriptional action by GATA-1 in erythroid cells. More generally, our experimental approach highlights critical differences in the action of cell-specific transcription proteins in different cellular environments and the power of cell lines derived from genetically modified ES cells to elucidate gene function.


2006 ◽  
Vol 18 (8) ◽  
pp. 839 ◽  
Author(s):  
Steven L. Stice ◽  
Nolan L. Boyd ◽  
Sujoy K. Dhara ◽  
Brian A. Gerwe ◽  
David W. Machacek ◽  
...  

Human and non-human primate embryonic stem (ES) cells are invaluable resources for developmental studies, pharmaceutical research and a better understanding of human disease and replacement therapies. In 1998, subsequent to the establishment of the first monkey ES cell line in 1995, the first human ES cell line was developed. Later, three of the National Institute of Health (NIH) lines (BG01, BG02 and BG03) were derived from embryos that would have been discarded because of their poor quality. A major challenge to research in this area is maintaining the unique characteristics and a normal karyotype in the NIH-registered human ES cell lines. A normal karyotype can be maintained under certain culture conditions. In addition, a major goal in stem cell research is to direct ES cells towards a limited cell fate, with research progressing towards the derivation of a variety of cell types. We and others have built on findings in vertebrate (frog, chicken and mouse) neural development and from mouse ES cell research to derive neural stem cells from human ES cells. We have directed these derived human neural stem cells to differentiate into motoneurons using a combination of developmental cues (growth factors) that are spatially and temporally defined. These and other human ES cell derivatives will be used to screen new compounds and develop innovative cell therapies for degenerative diseases.


2008 ◽  
Vol 20 (1) ◽  
pp. 224
Author(s):  
J. Okahara-Narita ◽  
J. Yamasaki ◽  
C. Iwatani ◽  
H. Tsuchiya ◽  
K. Wakimoto ◽  
...  

The establishment of most embryonic stem (ES) cell lines requires the destruction of embryos. Some ES cell lines in mice and humans are currently derived from a single blastomere, so that remaining blastomeres can still develop into fetuses. However, the procedures currently in use for establishing these lines are very complicated, and other ES cell lines from the same species are needed (Chung et al. 2006 Nature 439, 216–219; Klimanskaya et al. 2006 Nature 444, 481–485). The objective of this study was to devise a method simpler than those previously described for establishing ES cell lines from a single blastomere in the cynomolgus monkey. Controlled ovarian stimulation and oocyte recovery have been described previously by Torii et al. (2000 Primates 41, 39–47). Cumulus-free mature oocytes were fertilized by intracytoplasmic sperm injection (ICSI), and then cultured at 38�C in 5% CO2, 5% O2 for 2 days. The zona pellucida of 4- to 5-cell-stage embryos was disrupted using acidic Tyrode's solution, and individual blastomeres were separated from the denuded embryos using trypsin. These blastomeres were cultured on mitomycin-C-treated mouse embryonic fibroblasts and ES medium containing adrenocorticotropic hormone (ACTH) (Ogawa et al. 2004 Genes to Cells 9, 471–477). After the formation of initial outgrowths, half of the medium was changed every other day until the outgrowths reached approximately 100 cells. Passage of putative monkey ES cells was performed by mechanical dispersion of the colonies and transfer to fresh feeders every 3–4 days until there were enough cells for enzymatic dispersion. One stable ES cell line was obtained from two 4- or 5-cell-stage embryos using ES medium containing ACTH. The morphology of this ES cell colony was consistent with the monkey ES cell colony previous described by Suemori et al. (2001 Dev. Dynamics 222, 273–279). The ES cell line was passaged more than 17 times, and the morphology of the ES cell colony did not differ between the first and seventeenth passages. The ES cells showed normal karyotype and retained pluripotency markers for primate ES cells including octamer-binding protein 4 (Oct-4), stage-specific embryonic antigen (SSEA)-4, tumor-rejection antigen (TRA)-1-60, and TRA-1-81. We are presently confirming whether this ES cell line possesses potencies to differentiate in all three embryonic germ layers using both an in vitro assay and teratoma formation. Here we showed that cynomolgus monkey ES cells can be derived from a single blastomere, without co-culturing another ES cell line, as has been done in previous studies on mice and humans. This method allows the establishment of ES cell lines from a single blastomere, leaving the other blastomeres available for embryo transfer. Thus, the method described here is simpler than previously described methods and alleviates some ethical concerns.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4199-4199
Author(s):  
Lev Silberstein ◽  
John E. Pimanda ◽  
Sandie Piltz ◽  
Liz Delaney ◽  
Scott Oldham ◽  
...  

Abstract The transcription factor SCL/TAL1 is essential for haematopoiesis and vascular development in the embryo. It is also expressed in the developing skeletal and central nervous systems, but lethality of SCL null mice has precluded detailed analysis of the role of this gene in these tissues.We have previously demonstrated that the SCL +18/19 enhancer directs reporter gene expression to haemangioblasts, endothelium and haematopoietic progenitors. Using human placental alkaline phosphatase as a reporter gene, we now report that the +19 core enhancer also directs expression to osteocytes, articular chondrocytes and bone lining cells in adult mice. In E14.5 embryos, the transgene is expressed in cells within the cartilaginous template of future bone and in the perichondrium. The pattern of expression of the transgene resembles that of endogenous SCL RNA and protein expression in age matched embryos. At E16.5, transgene-positive cells are seen within ossification centres. Activity of the enhancer during osteogenesis was observed both in bones formed through intra-membranous (e.g. cranial vault) and endochondral ossification (limbs and axial skeleton). We found that the murine pre-osteoblast cell line, MC3T3, expresses endogenous SCL. Stable transfection of these cells with luciferase reporter constructs that include the +19 core enhancer produce a 5-fold increase in luciferase activity. There is a progressive reduction in SCL RNA expression in these cells during osteogenic differentiation. This is consistent with a previous report that expression of SCL protein is down-regulated in skeletal tissues of more advanced stage embryos, and with our finding that the MLO-Y4 cell line, which phenotypically and functionally resembles mature osteocytes, does not express SCL. We addressed the issue of SCL function in bone formation using in-vitro differentiation of embryonic stem (ES) cells. Wild type and SCL−/− J1 ES cells did not differ in their ability to form bone nodules. These data demonstrate that SCL is not required for bone specification, but do not exclude a role for SCL in regulating bone formation in vivo. The SCL +19 core enhancer directs expression to haematopoietic progenitors and endothelium together with their putative precursors, haematopoietic endothelium and haemangioblasts. Our demonstration that the +19 core enhancer also targets expression to osteogenic cells is consistent with recent data suggesting that haematopoietic and osteogenic cells share a common precursor (Olmsted-Davis, EA et al PNAS 2003, Dominici M et al PNAS 2004) and that osteoblastic bone lining cells are intimately associated with haematopoietic stem cells (Calvi LM et al Nature 2003; Zhang J et al Nature 2003).


2020 ◽  
Vol 27 (11) ◽  
pp. 3146-3161
Author(s):  
Huiqing Liu ◽  
Weiji Weng ◽  
Rongjun Guo ◽  
Jie Zhou ◽  
Jun Xue ◽  
...  

Abstract Posttranslational modifications of nuclear proteins, including transcription factors, nuclear receptors, and their coregulators, have attracted much attention in cancer research. Although phosphorylation of oligodendrocyte transcription factor 2 (Olig2) may contribute to the notorious resistance of gliomas to radiation and genotoxic drugs, the precise mechanisms remain elusive. We show here that in addition to phosphorylation, Olig2 is also conjugated by small ubiquitin-like modifier-1 (SUMO1) at three lysine residues K27, K76, and K112. SUMOylation is required for Olig2 to suppress p53-mediated cell cycle arrest and apoptosis induced by genotoxic damage, and to enhance resistance to temozolomide (TMZ) in glioma. Both SUMOylation and triple serine motif (TSM) phosphorylation of Olig2 are required for the antiapoptotic function. Olig2 SUMOylation enhances its genetic targeting ability, which in turn occludes p53 recruitment to Cdkn1a promoter for DNA-damage responses. Our work uncovers a SUMOylation-dependent regulatory mechanism of Olig2 in regulating cancer survival.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 277-277
Author(s):  
Ying Guo ◽  
Charlie Mantel ◽  
Robert A. Hromas ◽  
Hal E. Broxmeyer

Murine embryonic stem (ES) cells are pluripotent, and may be of potential use for cell replacement and gene therapy. By understanding the mechanism of survival and anti-apoptosis of ES cells, it may be possible to enhance use of ES cells for clinical usage. Our previous studies indicated that undifferentiated ES cells converted into polyploidy instead of apoptosis under the stress. However, differentiated ES cells went through apoptosis in the same manner as mature cells. Oct-4 is a marker for undifferentiated ES cells. We wondered if Oct-4 might be a key player for choosing between polyploidy and apoptosis of ES cells under the stress. To address this question, Oct-4 tetracycline conditional knockout cell line ZHBtc4, received from Dr Austin Smith, was used. To evaluate whether Oct-4 was essential for stress-induced apoptosis of murine ES cells, we used three methods to induce stress: etoposide treatment, heat shock and UV exposure. Four treatment groups were studied, A: Oct-4 knock down ZHBtc4; B: Control ZHBtc4; C: Tetracycline treated CGR8 cell line; D: Control CGR8. CGR8 is the wild type parental cell line for ZHBtc4. These latter two groups were added to eliminate potential effects of tetracycline. After knockdown of Oct-4 for 24 hours, we induced apoptosis by etoposide, heat shock or UV exposure. Apoptosis for Oct-4 knocked down ES cells was significantly increased in response to all stress situations. This suggests that Oct-4 is important for modulating stress-induced apoptosis of ES cells. In order to address potential mechanisms for these effects, we focused on one member of the IAP family—Survivin. Survivin is a well known anti-apoptosis protein. In addition, Oct-4 and survivin are both specifically expressed in embryonic tissue, germ line and tumor tissues (such as breast, pancreatic and colon cancer), but not in other tissues or at low levels in these cells. We hypothesized that the mechanism of Oct-4 related anti-apoptosis may be mediated through Survivin. Towards this possibility, we transfected the Survivin promoter into ES cells after knockdown of Oct-4. Promoter activity of the group with knocked down Oct-4 expression was dramatically decreased, indicating that Oct-4 mediated anti-apoptosis may act through Survivin. Western blots showed that Oct-4 knocked down ES cells had decreased Survivin protein expression. STAT3 is a well known transcription factor. Studies have shown that LIF-induced STAT3 is responsible for ES cell survival. Also, it was reported that STAT3 regulated survivin in breast cancer. We tested whether Oct-4 regulated Survivin through STAT3. Western Blot analysis showed that down regulated Oct-4 induced decreased phosphorylation of STAT3 and expression of total STAT3 protein. This suggests that Oct-4 is essential for anti-apoptosis of ES cells in response to stress, and this effect may be mediated through the STAT3/Survivin pathway.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3093-3093
Author(s):  
Sharon Singh ◽  
Sehba Dsilva ◽  
Jeffrey Michael Lipton ◽  
Steven Ellis ◽  
Johnson M. Liu

Abstract Diamond Blackfan anemia (DBA) is an inherited bone marrow failure syndrome that is characterized by erythroid hypoplasia, risk of other cytopenias, congenital anomalies and a cancer predisposition. Thus far, all the genes identified as mutated in DBA encode ribosomal proteins (RPS19, RPS17, RPS24, RPL5, RPL11, and RPL35a). In the 25% of DBA patients with RPS19 mutations, haploinsufficiency of RPS19 has been linked to faulty ribosome biogenesis, which ultimately predisposes erythroid precursors to apoptosis through as yet unknown mechanisms. Previous attempts by others to apply targeted mutagenesis to Rps19 were unsuccessful because of compensatory Rps19 expression from the non-targeted allele. We have concentrated our efforts on characterizing the murine Rps19-mutated embryonic stem (ES) cell, S17-10H1, which was generated using a genetrap strategy. The gene-trap vector contains a strong splice acceptor-β-geo cassette-poly A termination, and following insertion, it should cause splicing with the exon upstream and termination at the poly A signal, effectively cutting Rps19 in half. S17-10H1 was sequenced using 3′ RACE (rapid amplification of cDNA ends) to confirm insertion of the vector between exons 2 and 3 of Rps19. PCR with primers against the β-geo sequence was also used to confirm insertion of the gene trap vector into the mutant ES cells. Western blot analysis of two different ES cell samples confirmed at least 50% less Rps19 protein than found in the wild-type parental ES cell line, AK7. The ES cells were subsequently induced to undergo primary differentiation into embryoid bodies (EBs). Although there was no significant difference in the EB size or shape at day 5 of culture, the number of EBs that formed in the mutant cultures was decreased by at least three-fold. Preliminary experiments indicated no obvious morphological differences in day 13 EBs derived from parental or mutant ES cells. We attempted to create chimeric mice by microinjection of the S17-10H1 cell line into 36 blastocysts. Six chimeric mice were set up in mating pairs with C57BL/6J partners. Analysis of more than 60 pups from the 60% chimeric male revealed a lack of germline transmission, possibly indicating that this mutation leads to embryonic lethality or inability to complete gametogenesis. We conclude that this ES cell differentiation model mimics the human disease in leading to Rps19 haploinsufficiency and provides a new and potentially powerful tool that can be used to elucidate molecular mechanisms and test potential therapies in DBA.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 877-877
Author(s):  
Tracie A. Goldberg ◽  
Sharon Singh ◽  
Adrianna Henson ◽  
Abdallah Nihrane ◽  
Jeffrey Michael Lipton ◽  
...  

Abstract Abstract 877 Background: Diamond Blackfan anemia (DBA), a rare inherited bone marrow failure syndrome, is characterized mainly by erythroid hypoplasia but is also associated with congenital anomalies, short stature and cancer predisposition. DBA has been shown to result from haploinsufficiency of ribosomal proteins (RPS17, RPS19, RPS24, RPL5, RPL11, RPL35a), which renders erythroid precursors highly sensitive to death by apoptosis. The ontogeny and basis of the hematopoietic defect are unclear. The typical presentation of anemia occurs at 2–3 months of age, although there are rare cases of hydrops fetalis. Marked phenotypic variations exist among members of the same family and also between subsets of patients with different mutations. Methods: We studied in vitro hematopoietic differentiation of two murine embryonic stem (ES) cell lines: YHC074, Rps19 mutant with the pGT0Lxf gene trap vector inserted in intron 3 of Rps19, and D050B12, Rpl5 mutant with the FlipRosaβgeo gene trap vector inserted in intron 3 of Rpl5. Wild-type parental cell lines were used as controls. For primary differentiation and generation of embryoid bodies (EBs), ES cells were cultured in serum-supplemented methylcellulose medium containing stem cell factor (SCF). After 7 days, the cultures were fed with medium containing SCF, interleukin-3 (IL-3), IL-6 and erythropoietin (epo). EBs were scored on day 6 for total quantity, then again on day 12 for hematopoietic percentage. For secondary differentiation into definitive hematopoietic colonies, day 10 EBs were disrupted, and individual cells were suspended in serum-supplemented methylcellulose medium containing SCF, IL-3, Il-6 and epo. Definitive hematopoietic colonies were counted on day 10. Primitive erythropoiesis differentiation assays were performed by disruption of day 4 EBs, followed by suspension of cells in methylcellulose medium containing plasma-derived serum and epo. Primitive erythropoiesis colonies were counted on day 7. Results: We confirmed haploinsufficient expression (∼50% wild type) of Rps19 in YHC074 and Rpl5 protein in D050B12 by Western blot analysis. By polysome analysis, we found a selective reduction in the 40S subunit peak in the Rps19 mutant cell line and in the 60S subunit peak in the Rpl5 mutant cell line. Both types of mutants produced a significantly decreased number of EBs, particularly hematopoietic EBs, compared to parental cell lines. EB size was not compromised in the Rps19 mutant cell line, while Rpl5 mutant ES cells produced significantly smaller EBs, compared to its parental cells. Upon differentiation of cells to definitive hematopoietic colonies, both Rps19 and Rpl5 mutants showed a similar reduction in the erythroid (CFU-E and BFU-E) to myeloid (CFU-GM) colony formation ratio. Primitive erythropoiesis was conserved in the Rps19 mutant (Figure 1. 1, top panel). By contrast, the Rpl5 mutant demonstrated a severe primitive erythropoiesis defect (Figure 1. 1, bottom panel). For confirmation of these results in an isogenic background, we stably transfected YHC074 ES cells with a vector expressing wild-type Rps19 cDNA and the puromycin resistance gene. Several resistant clones expressed Rps19 at the wild-type level. Upon differentiation of a chosen clone, we demonstrated correction of the EB defect and the definitive erythropoiesis defect, suggesting that the hematopoietic differentiation defects seen are directly related to levels of Rps19 protein. We are currently working on correction of the D050B12 ES cells in a similar manner. Conclusion: Murine ES cell lines with Rps19 and Rpl5 mutations exhibit ribosomal protein haploinsufficiency, demonstrate respective ribosome assembly defects, and recapitulate the major DBA hematopoietic differentiation defect. In addition, a unique defect in primitive erythropoiesis in the Rpl5 mutant ES cell line suggests that the Rpl5 mutation in this mouse strain affects early-stage embryogenesis, a finding which may offer insight into the ontogeny of DBA hematopoiesis and may offer an explanation for phenotypic variations seen in patients (such as hydrops fetalis). Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document