scholarly journals Genetic Deletion of Murine SPRY Domain-Containing SOCS Box Protein 2 (SSB-2) Results in Very Mild Thrombocytopenia

2005 ◽  
Vol 25 (13) ◽  
pp. 5639-5647 ◽  
Author(s):  
S. L. Masters ◽  
K. R. Palmer ◽  
W. S. Stevenson ◽  
D. Metcalf ◽  
E. M. Viney ◽  
...  

ABSTRACT The SSB family is comprised of four highly homologous proteins containing a C-terminal SOCS box motif and a central SPRY domain. No function has yet been ascribed to any member of this family in mammalian species despite a clear role for other SOCS proteins in negative regulation of cytokine signaling. To investigate its physiological role, the murine Ssb-2 gene was deleted by homologous recombination. SSB-2-deficient mice were shown to have a reduced rate of platelet production, resulting in very mild thrombocytopenia (25% decrease in circulating platelets). Tissue histology and other hematological parameters were normal, as was the majority of serum biochemistry, with the exception that blood urea nitrogen (BUN) levels were decreased in mice lacking SSB-2. Quantitative analysis of SSB mRNA levels indicated that SSB-1, -2, and -3 were ubiquitously expressed; however, SSB-4 was only expressed at very low levels. SSB-2 expression was observed in the kidney and in megakaryocytes, a finding consistent with the phenotype of mice lacking this gene. Deletion of SSB-2 thus perturbs the steady-state level of two tightly controlled homeostatic parameters and identifies a critical role for SSB-2 in regulating platelet production and BUN levels.

2021 ◽  
Vol 12 ◽  
Author(s):  
Parveen Kumar ◽  
Kanchan Saini ◽  
Vikram Saini ◽  
Tanecia Mitchell

Individuals with calcium oxalate (CaOx) kidney stones can have secondarily infected calculi which may play a role in the development of recurrent urinary tract infection (UTI). Uropathogenic Escherichia coli (UPEC) is the most common causative pathogen of UTIs. Macrophages play a critical role in host immune defense against bacterial infections. Our previous study demonstrated that oxalate, an important component of the most common type of kidney stone, impairs monocyte cellular bioenergetics and redox homeostasis. The objective of this study was to investigate whether oxalate compromises macrophage metabolism, redox status, anti-bacterial response, and immune response. Monocytes (THP-1, a human monocytic cell line) were exposed to sodium oxalate (soluble oxalate; 50 µM) for 48 hours prior to being differentiated into macrophages. Macrophages were subsequently exposed to calcium oxalate crystals (50 µM) for 48 hours followed by UPEC (MOI 1:2 or 1:5) for 2 hours. Peritoneal macrophages and bone marrow-derived macrophages (BMDM) from C57BL/6 mice were also exposed to oxalate. THP-1 macrophages treated with oxalate had decreased cellular bioenergetics, mitochondrial complex I and IV activity, and ATP levels compared to control cells. In addition, these cells had a significant increase in mitochondrial and total reactive oxygen species levels, mitochondrial gene expression, and pro-inflammatory cytokine (i.e. Interleukin-1β, IL-1β and Interleukin-6, IL-6) mRNA levels and secretion. In contrast, oxalate significantly decreased the mRNA levels and secretion of the anti-inflammatory cytokine, Interleukin-10 (IL-10). Further, oxalate increased the bacterial burden of primary macrophages. Our findings demonstrate that oxalate compromises macrophage metabolism, redox homeostasis, and cytokine signaling leading to a reduction in anti-bacterial response and increased infection. These data highlight a novel role of oxalate on macrophage function.


2002 ◽  
Vol 22 (13) ◽  
pp. 4567-4578 ◽  
Author(s):  
Danielle L. Krebs ◽  
Rachel T. Uren ◽  
Donald Metcalf ◽  
Steven Rakar ◽  
Jian-Guo Zhang ◽  
...  

ABSTRACT SOCS-6 is a member of the suppressor of cytokine signaling (SOCS) family of proteins (SOCS-1 to SOCS-7 and CIS) which each contain a central SH2 domain and a carboxyl-terminal SOCS box. SOCS-1, SOCS-2, SOCS-3, and CIS act to negatively regulate cytokine-induced signaling pathways; however, the actions of SOCS-4, SOCS-5, SOCS-6, and SOCS-7 remain less clear. Here we have used both biochemical and genetic approaches to examine the action of SOCS-6. We found that SOCS-6 and SOCS-7 are expressed ubiquitously in murine tissues. Like other SOCS family members, SOCS-6 binds to elongins B and C through its SOCS box, suggesting that it might act as an E3 ubiquitin ligase that targets proteins bound to its SH2 domain for ubiquitination and proteasomal degradation. We investigated the binding specificity of the SOCS-6 and SOCS-7 SH2 domains and found that they preferentially bound to phosphopeptides containing a valine in the phosphotyrosine (pY) +1 position and a hydrophobic residue in the pY +2 and pY +3 positions. In addition, these SH2 domains interacted with a protein complex consisting of insulin receptor substrate 4 (IRS-4), IRS-2, and the p85 regulatory subunit of phosphatidylinositol 3-kinase. To investigate the physiological role of SOCS-6, we generated mice lacking the SOCS-6 gene. SOCS-6−/− mice were born in a normal Mendelian ratio, were fertile, developed normally, and did not exhibit defects in hematopoiesis or glucose homeostasis. However, both male and female SOCS-6−/− mice weighed approximately 10% less than wild-type littermates.


Endocrinology ◽  
2004 ◽  
Vol 145 (12) ◽  
pp. 5525-5531 ◽  
Author(s):  
Gary M. Leong ◽  
Sofia Moverare ◽  
Jesena Brce ◽  
Nathan Doyle ◽  
Klara Sjögren ◽  
...  

Abstract Suppressors of cytokine signaling (SOCS) are important negative regulators of cytokine action. We recently reported that estrogen stimulates SOCS-2 expression and inhibits GH signaling in kidney cells. The effects of estrogen on SOCS expression in other tissues are unclear. The aim of this study was to investigate in vivo and in vitro whether estrogen affected SOCS expression in the liver, a major target organ of GH. The in vivo hepatic effects of estrogen on ovariectomized mice lacking estrogen receptor (ER)-α, ERβ, or both and their wild-type littermates were examined by DNA microarray analysis. In vitro, the effects of estrogen on SOCS expression in human hepatoma cells were examined by reverse transcription quantitative PCR. Long-term (3 wk) estrogen treatment induced a 2- to 3-fold increase in hepatic expression of SOCS-2 and -3 in wild-type and ERβ knockout mice but not in those lacking ERα or both ER subtypes. Short-term treatment (at 24 h) increased the mRNA level of SOCS-3 but not SOCS-2. In cultured hepatoma cells, estrogen increased SOCS-2 and -3 mRNA levels by 2-fold in a time- and dose-dependent manner (P < 0.05). Estrogen induced murine SOCS-3 promoter activity by 2-fold (P < 0.05) in constructs containing a region between nucleotides −1862 and −855. Moreover, estrogen and GH had additive effects on the SOCS-3 promoter activity. In summary, estrogen, via ERα, up-regulated hepatic expression of SOCS-2 and -3, probably through transcriptional activation. This indicates a novel mechanism of estrogen regulation of cytokine action.


2007 ◽  
Vol 21 (11) ◽  
pp. 2821-2831 ◽  
Author(s):  
Isabel Uyttendaele ◽  
Irma Lemmens ◽  
Annick Verhee ◽  
Anne-Sophie De Smet ◽  
Joël Vandekerckhove ◽  
...  

Abstract Binding of GH to its receptor induces rapid phosphorylation of conserved tyrosine motifs that function as recruitment sites for downstream signaling molecules. Using mammalian protein-protein interaction trap (MAPPIT), a mammalian two-hybrid method, we mapped the binding sites in the GH receptor for signal transducer and activator of transcription 5 (STAT5) a and b and for the negative regulators of cytokine signaling cytokine-inducible Src-homology 2 (SH2)-containing protein (CIS) and suppressor of cytokine signaling 2 (SOCS2). Y534, Y566, and Y627 are the major recruitment sites for STAT5. A non-overlapping recruitment pattern is observed for SOCS2 and CIS with positions Y487 and Y595 as major binding sites, ruling out SOCS-mediated inhibition of STAT5 activation by competition for shared binding sites. More detailed analysis revealed that CIS binding to the Y595, but not to the Y487 motif, depends on both its SH2 domain and the C-terminal part of its SOCS box, with a critical role for the CIS Y253 residue. This functional divergence of the two CIS/SOCS2 recruitment sites is also observed upon substitution of the Y+1 residue by leucine, turning the Y487, but not the Y595 motif into a functional STAT5 recruitment site.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Yuko Maejima ◽  
Shoko Yokota ◽  
Masaru Shimizu ◽  
Shoichiro Horita ◽  
Daisuke Kobayashi ◽  
...  

Abstract Background Feeding rhythm disruption contributes to the development of obesity. The receptors of glucagon-like peptide-1 (GLP-1) are distributed in the wide regions of the brain. Among these regions, GLP-1 receptors (GLP-1R) are expressed in the dorsomedial hypothalamic nucleus (DMH) which are known to be associated with thermogenesis and circadian rhythm development. However, the physiological roles of GLP-1R expressing neurons in the DMH remain elusive. Methods To examine the physiological role of GLP-1R expressing neurons in the DMH, saporin-conjugated exenatide4 was injected into rat brain DMH to delete GLP-1R-positive neurons. Subsequently, locomotor activity, diurnal feeding pattern, amount of food intake and body weight were measured. Results This deletion of GLP-1R-positive neurons in the DMH induced hyperphagia, the disruption of diurnal feeding pattern, and obesity. The deletion of GLP-1R expressing neurons also reduced glutamic acid decarboxylase 67 and cholecystokinin A receptor mRNA levels in the DMH. Also, it reduced the c-fos expression after refeeding in the suprachiasmatic nucleus (SCN). Thirty percent of DMH neurons projecting to the SCN expressed GLP-1R. Functionally, refeeding after fasting induced c-fos expression in the SCN projecting neurons in the DMH. As for the projection to the DMH, neurons in the nucleus tractus solitarius (NTS) were found to be projecting to the DMH, with 33% of those neurons being GLP-1-positive. Refeeding induced c-fos expression in the DMH projecting neurons in the NTS. Conclusion These findings suggest that GLP-1R expressing neurons in the DMH may mediate feeding termination. In addition, this meal signal may be transmitted to SCN neurons and change the neural activities.


2021 ◽  
Vol 22 (4) ◽  
pp. 1969
Author(s):  
Sergey Matveevsky ◽  
Tsenka Chassovnikarova ◽  
Tatiana Grishaeva ◽  
Maret Atsaeva ◽  
Vasilii Malygin ◽  
...  

Cyclin-dependent kinases (CDKs) are crucial regulators of the eukaryotic cell cycle. The critical role of CDK2 in the progression of meiosis was demonstrated in a single mammalian species, the mouse. We used immunocytochemistry to study the localization of CDK2 during meiosis in seven rodent species that possess hetero- and homomorphic male sex chromosomes. To compare the distribution of CDK2 in XY and XX male sex chromosomes, we performed multi-round immunostaining of a number of marker proteins in meiotic chromosomes of the rat and subterranean mole voles. Antibodies to the following proteins were used: RAD51, a member of the double-stranded DNA break repair machinery; MLH1, a component of the DNA mismatch repair system; and SUN1, which is involved in the connection between the meiotic telomeres and nuclear envelope, alongside the synaptic protein SYCP3 and kinetochore marker CREST. Using an enhanced protocol, we were able to assess the distribution of as many as four separate proteins in the same meiotic cell. We showed that during prophase I, CDK2 localizes to telomeric and interstitial regions of autosomes in all species investigated (rat, vole, hamster, subterranean mole voles, and mole rats). In sex bivalents following synaptic specificity, the CDK2 signals were distributed in three different modes. In the XY bivalent in the rat and mole rat, we detected numerous CDK2 signals in asynaptic regions and a single CDK2 focus on synaptic segments, similar to the mouse sex chromosomes. In the mole voles, which have unique XX sex chromosomes in males, CDK2 signals were nevertheless distributed similarly to the rat XY sex chromosomes. In the vole, sex chromosomes did not synapse, but demonstrated CDK2 signals of varying intensity, similar to the rat X and Y chromosomes. In female mole voles, the XX bivalent had CDK2 pattern similar to autosomes of all species. In the hamster, CDK2 signals were revealed in telomeric regions in the short synaptic segment of the sex bivalent. We found that CDK2 signals colocalize with SUN1 and MLH1 signals in meiotic chromosomes in rats and mole voles, similar to the mouse. The difference in CDK2 manifestation at the prophase I sex chromosomes can be considered an example of the rapid chromosome evolution in mammals.


Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Sylvia Cechova ◽  
Pei-Lun Chu ◽  
Joseph C Gigliotti ◽  
Fan Chan ◽  
Thu H Le

Background: Collectrin ( Tmem27 ) is a key regulator of blood pressure (BP) and modulator of the bioavailability of nitric oxide (NO) and superoxide. It is highly expressed in the kidney in the proximal tubule (PT), collecting duct, and throughout the vascular endothelium. We reported that collectrin plays a critical role as a chaperone for the reabsorption of all amino acids (AAs) in the PT, and for the uptake of the cationic AA L-arginine (L-Arg) in endothelial cells. Global collectrin knockout ( Tmem27 Y/- ) mice display baseline hypertension (HTN), augmented salt-sensitive hypertension (SSH), and decreased renal blood flow. Objective and Methods: To determine the PT-specific effect of collectrin on BP homeostasis and salt sensitivity, we used the Cre -loxP approach and PEPCK-Cre to generate a mouse line lacking collectrin specifically in the PT-- PEPCK-Cre + Tmem27 Y/Flox mice. PEPCK-Cre - Tmem27 Y/Flox mice were used as control. Radiotelemetry was used to measure BP for 2 weeks at baseline and 2 weeks on high salt diet (HSD). Renal blood flow at baseline and on HSD was measured using contrast enhanced ultrasound in the same mice. Results: Successful deletion of collectrin in the PT was confirmed by assessing mRNA levels using real-time RT-PCR, immunohistochemistry staining of renal tissues using anti-collectrin antibody, and quantitation of protein from kidney cortex by Western analysis. Compared to control PEPCK-Cre - Tmem27 Y/Flox mice (n=6), PEPCK-Cre + Tmem27 Y/Flox mice (n=6) displayed significantly higher systolic BP (SBP) at baseline (120.0 ± 2.5 vs 131.6 ± 2.9 mm Hg; p = 0.014) and after HSD (135.3 ± 2.6 vs 151.5 ± 5.2 mm Hg; p = 0.019). Renal blood flow was not different between groups, at baseline nor after HSD. Conclusion: Collectrin in the PT plays an important role in blood pressure homeostasis and response to sodium intake, independent of renal blood flow. Increasing proximal tubular collectrin activity may be a novel therapeutic strategy for the treatment of hypertension and salt-sensitivity.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Michael R Morissette ◽  
Janelle C Stricker ◽  
Anthony Rosenzweig

Myostatin (MSTN) is a well-known negative regulator of skeletal muscle mass, and MSTN inhibition is being considered as therapy for multiple conditions associated with muscle wasting, including sarcopenia of aging. We have previously shown that MSTN inhibits phenylephrine-induced cardiomyocyte hypertrophy, however whether MSTN has a physiological role in regulating cardiac hypertrophy or function at baseline or with aging remains unclear. To determine if MSTN is dynamically regulated with aging, we performed QRT-PCR on hearts from male wild-type (WT) senescent mice (24 months old (mos)) and rats (32 mos). MSTN mRNA levels were increased in old versus young (4 mos) hearts (2.5- and 4-fold respectively, p<0.05). To study the functional significance of MSTN in aging, we maintained germline MSTN-knockout mice (MSTN −/− ) and their WT littermates for 24 –27 months. We found no difference in heart weight of aged male MSTN −/− compared to WT mice (162.5±17.0 (n=4) vs 153.2±4.2 (n=4) mg, p=0.51), which would argue against an inhibitory role for MSTN in age-related increases in cardiac mass. We also performed echocardiography on unanesthetized senescent MSTN −/− and WT mice. MSTN −/− mice had better fractional shortening (58.1±2.0 (n=7) vs 49.4±1.2 (n=8) %, p=0.002) and smaller LV end-diastolic diameter (3.41±0.19 vs 2.71±0.14 mm, p=0.012) compared to WT. The decreased cardiac function seen in aged WT mice was associated with increased cardiac fibrosis on Masson-Trichrome stained sections. Western blot analysis also demonstrated a 3.3-fold increase in phospholamban phosphorylation in MSTN −/− hearts (p<0.05), compared to WT, while no differences in SERCA2a or calsequestrin protein levels were seen. We conclude that MSTN increases in the heart with aging, and that genetic deletion of MSTN results in improved cardiac function without a difference in heart mass in senescent mice. Decreased cardiac fibrosis and increased inhibition (phosphorylation) of phospholamban likely contribute to the better cardiac function seen in senescent MSTN −/− mice. These results suggest that inhibiting MSTN for sarcopenia in the elderly may also benefit cardiac function and could represent a novel therapeutic approach for ameliorating cardiac dysfunction and/or fibrosis. This research has received full or partial funding support from the American Heart Association, AHA Founders Affiliate (Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Rhode Island, Vermont).


2013 ◽  
Vol 27 (12) ◽  
pp. 2093-2104 ◽  
Author(s):  
Hsun-Ming Chang ◽  
Jung-Chien Cheng ◽  
Christian Klausen ◽  
Peter C. K. Leung

In addition to somatic cell-derived growth factors, oocyte-derived growth differentiation factor (GDF)9 and bone morphogenetic protein (BMP)15 play essential roles in female fertility. However, few studies have investigated their effects on human ovarian steroidogenesis, and fewer still have examined their differential effects or underlying molecular determinants. In the present study, we used immortalized human granulosa cells (SVOG) and human granulosa cell tumor cells (KGN) to compare the effects of GDF9 and BMP15 on steroidogenic enzyme expression and investigate potential mechanisms of action. In SVOG cells, neither GDF9 nor BMP15 affects the mRNA levels of P450 side-chain cleavage enzyme or 3β-hydroxysteroid dehydrogenase. However, treatment with BMP15, but not GDF9, significantly decreases steroidogenic acute regulatory protein (StAR) mRNA and protein levels as well as progesterone production. These suppressive effects, along with the induction of Sma and Mad-related protein (SMAD)1/5/8 phosphorylation, are attenuated by cotreatment with 2 different BMP type I receptor inhibitors (dorsomorphin and DMH-1). Furthermore, depletion of activin receptor-like kinase (ALK)3 using small interfering RNA reverses the effects of BMP15 on SMAD1/5/8 phosphorylation and StAR expression. Similarly, knockdown of ALK3 abolishes BMP15-induced SMAD1/5/8 phosphorylation in KGN cells. These results provide evidence that oocyte-derived BMP15 down-regulates StAR expression and decreases progesterone production in human granulosa cells, likely via ALK3-mediated SMAD1/5/8 signaling. Our findings suggest that oocyte may play a critical role in the regulation of progesterone to prevent premature luteinization during the late stage of follicle development.


2004 ◽  
Vol 24 (19) ◽  
pp. 8691-8704 ◽  
Author(s):  
Masashi Akaike ◽  
Wenyi Che ◽  
Nicole-Lerner Marmarosh ◽  
Shinsuke Ohta ◽  
Masaki Osawa ◽  
...  

ABSTRACT Peroxisome proliferator-activated receptors (PPAR) are ligand-activated transcription factors that form a subfamily of the nuclear receptor gene family. Since both flow and PPARγ have atheroprotective effects and extracellular signal-regulated kinase 5 (ERK5) kinase activity is significantly increased by flow, we investigated whether ERK5 kinase regulates PPARγ activity. We found that activation of ERK5 induced PPARγ1 activation in endothelial cells (ECs). However, we could not detect PPARγ phosphorylation by incubation with activated ERK5 in vitro, in contrast to ERK1/2 and JNK, suggesting a role for ERK5 as a scaffold. Endogenous PPARγ1 was coimmunoprecipitated with endogenous ERK5 in ECs. By mammalian two-hybrid analysis, we found that PPARγ1 associated with ERK5a at the hinge-helix 1 region of PPARγ1. Expressing a hinge-helix 1 region PPARγ1 fragment disrupted the ERK5a-PPARγ1 interaction, suggesting a critical role for hinge-helix 1 region of PPARγ in the ERK5-PPARγ interaction. Flow increased ERK5 and PPARγ1 activation, and the hinge-helix 1 region of the PPARγ1 fragment and dominant negative MEK5β significantly reduced flow-induced PPARγ activation. The dominant negative MEK5β also prevented flow-mediated inhibition of tumor necrosis factor alpha-mediated NF-κB activation and adhesion molecule expression, including vascular cellular adhesion molecule 1 and E-selectin, indicating a physiological role for ERK5 and PPARγ activation in flow-mediated antiinflammatory effects. We also found that ERK5 kinase activation was required, likely by inducing a conformational change in the NH2-terminal region of ERK5 that prevented association of ERK5 and PPARγ1. Furthermore, association of ERK5a and PPARγ1 disrupted the interaction of SMRT and PPARγ1, thereby inducing PPARγ activation. These data suggest that ERK5 mediates flow- and ligand-induced PPARγ activation via the interaction of ERK5 with the hinge-helix 1 region of PPARγ.


Sign in / Sign up

Export Citation Format

Share Document