scholarly journals Strain-Level Differences in Porphyrin Production and Regulation in Propionibacterium acnes Elucidate Disease Associations

mSphere ◽  
2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Tremylla Johnson ◽  
Dezhi Kang ◽  
Emma Barnard ◽  
Huiying Li

ABSTRACT Propionibacterium acnes is a dominant bacterium residing on skin, and it has been thought to play a causal role in several diseases including acne, a common skin disease affecting more than 80% of people worldwide. While specific strains of P. acnes have been associated with either disease or healthy skin, the mechanisms remain unclear. Recently, we showed that vitamin B12 supplementation increased porphyrin production in P. acnes, leading to acne development (D. Kang, B. Shi, M. C. Erfe, N. Craft, and H. Li, Sci. Transl. Med. 7:293ra103, 2015, doi:10.1126/scitranslmed.aab2009). Here, we reveal that the levels of porphyrin production and vitamin B12 regulation are different between acne- and health-associated strains, suggesting a potential molecular mechanism for disease-associated strains in acne pathogenesis and for health-associated strains in skin health. This study highlights the importance of understanding the strain-level differences of the human microbiota in disease pathogenesis. Our findings also suggest the porphyrin biosynthesis pathway as a candidate drug target and use of health-associated strains as potential probiotics in novel acne therapeutics. Propionibacterium acnes is an important skin commensal, but it is also considered a pathogenic factor in several diseases including acne vulgaris, the most common skin disease. While previous studies have revealed P. acnes strain-level differences in health and disease associations, the underlying molecular mechanisms remain unknown. Recently, we demonstrated that vitamin B12 supplementation increases P. acnes production of porphyrins, a group of proinflammatory metabolites important in acne development (D. Kang, B. Shi, M. C. Erfe, N. Craft, and H. Li, Sci. Transl. Med. 7:293ra103, 2015, doi:10.1126/scitranslmed.aab2009). In this study, we compared the porphyrin production and regulation of multiple P. acnes strains. We revealed that acne-associated type IA-2 strains inherently produced significantly higher levels of porphyrins, which were further enhanced by vitamin B12 supplementation. On the other hand, health-associated type II strains produced low levels of porphyrins and did not respond to vitamin B12. Using a small-molecule substrate and inhibitor, we demonstrated that porphyrin biosynthesis was modulated at the metabolic level. We identified a repressor gene (deoR) of porphyrin biosynthesis that was carried in all health-associated type II strains, but not in acne-associated type IA-2 strains. The expression of deoR suggests additional regulation of porphyrin production at the transcriptional level in health-associated strains. Our findings provide one potential molecular mechanism for the different contributions of P. acnes strains to skin health and disease and support the role of vitamin B12 in acne pathogenesis. Our study emphasizes the importance of understanding the role of the commensal microbial community in health and disease at the strain level and suggests potential utility of health-associated P. acnes strains in acne treatment. IMPORTANCE Propionibacterium acnes is a dominant bacterium residing on skin, and it has been thought to play a causal role in several diseases including acne, a common skin disease affecting more than 80% of people worldwide. While specific strains of P. acnes have been associated with either disease or healthy skin, the mechanisms remain unclear. Recently, we showed that vitamin B12 supplementation increased porphyrin production in P. acnes, leading to acne development (D. Kang, B. Shi, M. C. Erfe, N. Craft, and H. Li, Sci. Transl. Med. 7:293ra103, 2015, doi:10.1126/scitranslmed.aab2009). Here, we reveal that the levels of porphyrin production and vitamin B12 regulation are different between acne- and health-associated strains, suggesting a potential molecular mechanism for disease-associated strains in acne pathogenesis and for health-associated strains in skin health. This study highlights the importance of understanding the strain-level differences of the human microbiota in disease pathogenesis. Our findings also suggest the porphyrin biosynthesis pathway as a candidate drug target and use of health-associated strains as potential probiotics in novel acne therapeutics.

mSphere ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Emma Barnard ◽  
Tremylla Johnson ◽  
Tracy Ngo ◽  
Uma Arora ◽  
Gunilla Leuterio ◽  
...  

ABSTRACT Porphyrins are intermediate metabolites in the biosynthesis of vital molecules, including heme, cobalamin, and chlorophyll. Bacterial porphyrins are known to be proinflammatory, with high levels linked to inflammatory skin diseases. Propionibacterium species are dominant skin commensals and play essential roles in defending against pathogens and in triggering an inflammatory response. To better understand how the inflammatory potential of the skin microbiome may vary depending on its propionibacterial composition, we compared the production levels of porphyrins among Propionibacterium acnes, Propionibacterium granulosum, Propionibacterium avidum, and Propionibacterium humerusii strains. We found that porphyrin production varied among these species, with P. acnes type I strains producing significantly larger amounts of porphyrins than P. acnes type II and III strains and other Propionibacterium species. P. acnes strains that are highly associated with the common skin condition acne vulgaris responded to vitamin B12 supplementation with significantly higher porphyrin production. In contrast, vitamin B12 supplementation had no effect on the porphyrin production of health-associated P. acnes strains and other propionibacteria. We observed low-level porphyrin production in most Propionibacterium strains harboring the deoR repressor gene, with the exception of P. acnes strains belonging to type I clades IB-3 and IC. Our findings shed light on the proinflammatory potential of distinct phylogenetic lineages of P. acnes as well as other resident skin propionibacteria. We demonstrate that the overall species and strain composition is important in determining the metabolic output of the skin microbiome in health and disease. IMPORTANCE Porphyrins are a group of metabolites essential to the biosynthesis of heme, cobalamin, and chlorophyll in living organisms. Bacterial porphyrins can be proinflammatory, with high levels linked to human inflammatory diseases, including the common skin condition acne vulgaris. Propionibacteria are among the most abundant skin bacteria. Variations in propionibacteria composition on the skin may lead to different porphyrin levels and inflammatory potentials. This study characterized porphyrin production in all lineages of Propionibacterium acnes, the most dominant skin Propionibacterium, and other resident skin propionibacteria, including P. granulosum, P. avidum, and P. humerusii. We revealed that P. acnes type I strains produced significantly more porphyrins than did type II and III strains and other Propionibacterium species. The findings from this study shed light on the proinflammatory potential of the skin microbiome and can be used to guide the development of effective acne treatments by modulating the skin microbiome and its metabolic activities.


2011 ◽  
Vol 55 (9) ◽  
pp. 4211-4217 ◽  
Author(s):  
J. Pannu ◽  
A. McCarthy ◽  
A. Martin ◽  
T. Hamouda ◽  
S. Ciotti ◽  
...  

ABSTRACTNB-003 and NB-003 gel formulations are oil-in-water nanoemulsions designed for use in bacterial infections.In vitrosusceptibility ofPropionibacterium acnesto NB-003 formulations and comparator drugs was evaluated. Both NB-003 formulations were bactericidal against allP. acnesisolates, including those that were erythromycin, clindamycin, and/or tetracycline resistant. In the absence of sebum, the MIC90s/minimum bactericidal concentrations (MBC90s) for NB-003, NB-003 gel, salicylic acid (SA), and benzoyl peroxide (BPO) were 0.5/2.0, 1.0/2.0, 1,000/2,000, and 50/200 μg/ml, respectively. In the presence of 50% sebum, the MIC90s/MBC90s of NB003 and BPOs increased to 128/1,024 and 400/1,600 μg/ml, respectively. The MIC90s/MBC90s of SA were not significantly impacted by the presence of sebum. A reduction in the MBC90s for NB-003 and BPO was observed when 2% SA or 0.5% BPO was integrated into the formulation, resulting in MIC90s/MBC90s of 128/256 μg/ml for NB003 and 214/428 μg/ml for BPO. The addition of EDTA enhanced thein vitroefficacy of 0.5% NB-003 in the presence or absence of 25% sebum. The addition of 5 mM EDTA to each well of the microtiter plate resulted in a >16- and >256-fold decrease in MIC90and MBC90, yielding a more potent MIC90/MBC90of ≤1/<1 μg/ml. The kinetics of bactericidal activity of NB-003 againstP. acneswere compared to those of a commercially available product of BPO. Electron micrographs ofP. acnestreated with NB-003 showed complete disruption of bacteria. Assessment of spontaneous resistance ofP. acnesrevealed no stably resistant mutant strains.


1999 ◽  
Vol 91 (6) ◽  
pp. 1041-1044 ◽  
Author(s):  
Michael Sabel ◽  
Jörg Felsberg ◽  
Martina Messing-Jünger ◽  
Eva Neuen-Jacob ◽  
Jürgen Piek

✓ The authors report the case of a man who had suffered a penetrating metal splinter injury to the left frontal lobe at 18 years of age. Thirty-seven years later the patient developed a left-sided frontal tumor at the precise site of the meningocerebral scar and posttraumatic defect. Histological examination confirmed a glioblastoma multiforme adjacent to the dural scar and metal splinters. In addition, a chronic abscess from which Propionibacterium acnes was isolated was found within the glioma tissue. The temporal and local association of metal splinter injury with chronic abscess, scar formation, and malignant glioma is highly suggestive of a causal relationship between trauma and the development of a malignant brain tumor.


2018 ◽  
Vol 85 (10) ◽  
Author(s):  
Alli Lynch ◽  
Seshu R. Tammireddy ◽  
Mary K. Doherty ◽  
Phillip D. Whitfield ◽  
David J. Clarke

ABSTRACTAcylated amino acids function as important components of the cellular membrane in some bacteria. Biosynthesis is initiated by theN-acylation of the amino acid, and this is followed by subsequentO-acylation of the acylated molecule, resulting in the production of the mature diacylated amino acid lipid. In this study, we use both genetics and liquid chromatography-mass spectrometry (LC-MS) to characterize the biosynthesis and function of a diacylated glycine lipid (GL) species produced inBacteroides thetaiotaomicron. We, and others, have previously reported the identification of a gene, namedglsBin this study, that encodes anN-acyltransferase activity responsible for the production of a monoacylated glycine calledN-acyl-3-hydroxy-palmitoyl glycine (or commendamide). In all of theBacteroidalesgenomes sequenced so far, theglsBgene is located immediately downstream from a gene, namedglsA, that is also predicted to encode a protein with acyltransferase activity. We use LC-MS to show that the coexpression ofglsBandglsAresults in the production of GL inEscherichia coli. We constructed a deletion mutant of theglsBgene inB. thetaiotaomicron, and we confirm thatglsBis required for the production of GL inB. thetaiotaomicron. Moreover, we show thatglsBis important for the ability ofB. thetaiotaomicronto adapt to stress and colonize the mammalian gut. Therefore, this report describes the genetic requirements for the biosynthesis of GL, a diacylated amino acid species that contributes to fitness in the human gut bacteriumB. thetaiotaomicron.IMPORTANCEThe gut microbiome has an important role in both health and disease of the host. The mammalian gut microbiome is often dominated by bacteria from theBacteroidales, an order that includesBacteroidesandPrevotella. In this study, we have identified an acylated amino acid, called glycine lipid, produced byBacteroides thetaiotaomicron, a beneficial bacterium originally isolated from the human gut. In addition to identifying the genes required for the production of glycine lipids, we show that glycine lipids have an important role during the adaptation ofB. thetaiotaomicronto a number of environmental stresses, including exposure to either bile or air. We also show that glycine lipids are important for the normal colonization of the murine gut byB. thetaiotaomicron. This work identifies glycine lipids as an important fitness determinant inB. thetaiotaomicronand therefore increases our understanding of the molecular mechanisms underpinning colonization of the mammalian gut by beneficial bacteria.


2018 ◽  
Vol 8 (2) ◽  
pp. 75-79
Author(s):  
Tri Siwi KN ◽  
Wiwik Norlita

Scabies is a common skin disease in tropical countries that are endemic. Scabies prevalence worldwide is reported to be about 300 million cases of year. Indonesia has a prevalence of scabies in 2016 of 4.60-12.9 percent. Based on reports from policlinic pesantren Darel Hikmah Pekanbaru, many santri who experience scabies disease in recent years. In 2009 there were 98 cases and in 2010 it increased to 115 cases. Al Fajar Orphanage is one of the communities that are vulnerable to the incidence of scabies diseases. In the last two years there have been 9 cases of skabies in the santri in the orphanage. This study aims to find out how the habit of teenage hygiene to prevent scabies at Al-Fajar Orphanage Muara Fajar Village, Rumbai District. This research use descriptive with junlah sampel 30 responden. Methods of data collection using questionnaires and. The results of the questionnaire showed that most adolescents had poor hygiene habits of 17 respondents (56.7 percent) with mean <12 and adolescents with good hygiene habits of 13 respondents (43.33 percent) with mean ≥ 12. Based on this research, it can be concluded that the habit of teenage hygiene in preventing scabies disease is still very need to be improved and require more intensive attention from pesantren teacher so that it can reduce the incidence of scabies disease in Al Fajar orphanage.


2019 ◽  
Vol 69 (4) ◽  
pp. 1087-1092 ◽  
Author(s):  
Itaru Dekio ◽  
Andrew McDowell ◽  
Mitsuo Sakamoto ◽  
Shuta Tomida ◽  
Moriya Ohkuma

In 2016, division of the genus Propionibacterium into four distinct genera was proposed. As a consequence, the species Propionibacterium acnes was transferred to Cutibacterium gen. nov. as Cutibacterium acnes comb. nov. The three recently proposed subspecies of P. acnes were not, however, accommodated in this proposal. Following a very recent validation of a new combination for C. acnes subsp. defendens and an automatically created C. acnes subsp. acnes , we now propose the new combination, C. acnes subsp. elongatum comb. nov. The type strain of Cutibacterium acnes subsp. elongatum is JCM 18919T (=NCTC 13655T). On the basis of further genomic and phenotypic (haemolysis and MALDI-TOF mass spectrometry) analyses of these subspecies, we also provide emended descriptions of the genus Cutibacterium Scholz and Kilian 2016, C. acnes subsp. acnes (Gilchrist 1900) Nouioui et al. 2018, and C. acnes subsp. defendens (McDowell et al. 2016) Nouioui et al. 2018.


2021 ◽  
Vol 9 (7) ◽  
pp. 1452-1456
Author(s):  
Manish Choudhari ◽  
Nikita Jamadari ◽  
Naresh Jain

Objective - To increase awareness of the psychosocial impact of Kushtha, Visarpa, Mukhadushika, Sheetpitta, Udarda and Kotha in Ayurveda and Acne vulgaris, Urticaria, Various types of fungal infections, Atopic dermatitis, Psoriasis etc. in modern point of view. Quality Of Evidence - A literature review was based on a MEDLINE search (1966 to 2000). Selected articles from the dermatologic and psychiatric literature, as well as other relevant medical journals, were reviewed and used as the basis for discussion of how skin disease affects patients’ lives and of appropriate management. Message - Dermatologic problems hurt patients’ quality of life. skin disease can produce stress, anxiety, anger, depression, low self-esteem, embarrassment, and other psychological, personal, professional and social life problems that affect patients’ lives in ways comparable to arthritis or other disabling illnesses, as well as showing a bidirectional relationship between skin disease and psychological distress. This review focuses on the effects of five common skin diseases seen by family physicians- Acne, Urticaria, Various types of fungal infections, Atopic dermatitis and Psoriasis. Conclusion - How skin disease affects psychosocial well-being is un- derappreciated. Increased understanding of the psychiatric comorbidity associated with skin disease and a biopsy- chosocial approach to management will ultimately improve patients’ lives. Keywords: Skin disease, Psychosocial Impact, Quality of life.


2012 ◽  
Vol 78 (22) ◽  
pp. 8025-8032 ◽  
Author(s):  
Anika Reinhold ◽  
Martin Westermann ◽  
Jana Seifert ◽  
Martin von Bergen ◽  
Torsten Schubert ◽  
...  

ABSTRACTCorrinoids are essential cofactors of reductive dehalogenases in anaerobic bacteria. Microorganisms mediating reductive dechlorination as part of their energy metabolism are either capable ofde novocorrinoid biosynthesis (e.g.,Desulfitobacteriumspp.) or dependent on exogenous vitamin B12(e.g.,Dehalococcoidesspp.). In this study, the impact of exogenous vitamin B12(cyanocobalamin) and of tetrachloroethene (PCE) on the synthesis and the subcellular localization of the reductive PCE dehalogenase was investigated in the Gram-positiveDesulfitobacterium hafniensestrain Y51, a bacterium able to synthesize corrinoidsde novo. PCE-depleted cells grown for several subcultivation steps on fumarate as an alternative electron acceptor lost the tetrachloroethene-reductive dehalogenase (PceA) activity by the transposition of thepcegene cluster. In the absence of vitamin B12, a gradual decrease of the PceA activity and protein amount was observed; after 5 subcultivation steps with 10% inoculum, more than 90% of the enzyme activity and of the PceA protein was lost. In the presence of vitamin B12, a significant delay in the decrease of the PceA activity with an ∼90% loss after 20 subcultivation steps was observed. This corresponded to the decrease in thepceAgene level, indicating that exogenous vitamin B12hampered the transposition of thepcegene cluster. In the absence or presence of exogenous vitamin B12, the intracellular corrinoid level decreased in fumarate-grown cells and the PceA precursor formed catalytically inactive, corrinoid-free multiprotein aggregates. The data indicate that exogenous vitamin B12is not incorporated into the PceA precursor, even though it affects the transposition of thepcegene cluster.


Author(s):  
Gemma Simcox

Skin disease has a serious impact on an individual’s quality of life. It is well recognized that conditions such as psoriasis may have a similar impact on a patient’s quality of life to chronic diseases such as diabetes, hypertension, and depression. Skin problems account for approximately 20% of all patient consultations in primary care in the UK. It is important that clinicians are able to diagnose common skin diseases such as acne, eczema, psoriasis, and cutaneous malignancies and initiate an appropriate management plan. This requires the ability to take a full history and conduct a complete examination. A complete dermatological examination involves examination of the entire skin, mucous membranes, hair, and nails. The description of cutaneous pathologies should include the location and distribution of lesions. The morphology of a lesion or each component of a generalized eruption should be noted. Other organ systems may also need to be examined. The questions in this chapter will test your knowledge of the skin problems that are frequently encountered in non-specialist clinical practice. Other more rare skin disorders are also covered, either because they are potentially life-threatening or because they are a sign of systemic disease. The questions are designed to improve your ability to recognize the morphology and distribution of cutaneous physical signs. Hopefully you will find these questions stimulating and an aid to improving your knowledge of skin disease.


Sign in / Sign up

Export Citation Format

Share Document