scholarly journals ZupT Facilitates Clostridioides difficile Resistance to Host-Mediated Nutritional Immunity

mSphere ◽  
2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Joseph P. Zackular ◽  
Reece J. Knippel ◽  
Christopher A. Lopez ◽  
William N. Beavers ◽  
C. Noel Maxwell ◽  
...  

ABSTRACT Clostridioides difficile is a spore-forming bacterium that causes severe colitis and is a major public health threat. During infection, C. difficile toxin production results in damage to the epithelium and a hyperinflammatory response. The immune response to CDI leads to robust neutrophil infiltration at the sight of infection and the deployment of numerous antimicrobials. One of the most abundant host immune factors associated with CDI is calprotectin, a metal-chelating protein with potent antimicrobial activity. Calprotectin is essential to the innate immune response to C. difficile and increasing levels of calprotectin correlate with disease severity in both adults and children with CDI. The fact that C. difficile persists in the presence of high levels of calprotectin suggests that this organism may deploy strategies to compete with this potent antimicrobial factor for essential nutrient metals during infection. In this report, we demonstrate that a putative zinc (Zn) transporter, ZupT, is employed by C. difficile to survive calprotectin-mediated metal limitation. ZupT is highly expressed in the presence of calprotectin and is required to protect C. difficile against calprotectin-dependent growth inhibition. When competing against wild-type C. difficile, zupT mutants show a defect in colonization and persistence in a murine model of infection. Together these data demonstrate that C. difficile utilizes a metal import system to combat nutritional immunity during CDI and suggest that strategies targeting nutrient acquisition in C. difficile may have therapeutic potential. IMPORTANCE During infection, pathogenic organisms must acquire essential transition metals from the host environment. Through the process of nutritional immunity, the host employs numerous strategies to restrict these key nutrients from invading pathogens. In this study, we describe a mechanism by which the important human pathogen Clostridioides difficile resists transition-metal limitation by the host. We report that C. difficile utilizes a zinc transporter, ZupT, to compete with the host protein calprotectin for nutrient zinc. Inactivation of this transporter in C. difficile renders this important pathogen sensitive to host-mediated metal restriction and confers a fitness disadvantage during infection. Our study demonstrates that targeting nutrient metal transport proteins in C. difficile is a potential avenue for therapeutic development.

mSphere ◽  
2020 ◽  
Vol 5 (6) ◽  
Author(s):  
Babita Adhikari Dhungel ◽  
Revathi Govind

ABSTRACT Clostridioides difficile is the leading cause of nosocomial infection and is the causative agent of antibiotic-associated diarrhea. The severity of the disease is directly associated with toxin production, and spores are responsible for the transmission and persistence of the organism. Previously, we characterized sin locus regulators SinR and SinR′ (we renamed it SinI), where SinR is the regulator of toxin production and sporulation. The SinI regulator acts as its antagonist. In Bacillus subtilis, Spo0A, the master regulator of sporulation, controls SinR by regulating the expression of its antagonist, sinI. However, the role of Spo0A in the expression of sinR and sinI in C. difficile had not yet been reported. In this study, we tested spo0A mutants in three different C. difficile strains, R20291, UK1, and JIR8094, to understand the role of Spo0A in sin locus expression. Western blot analysis revealed that spo0A mutants had increased SinR levels. Quantitative reverse transcription-PCR (qRT-PCR) analysis of its expression further supported these data. By carrying out genetic and biochemical assays, we show that Spo0A can bind to the upstream region of this locus to regulates its expression. This study provides vital information that Spo0A regulates the sin locus, which controls critical pathogenic traits such as sporulation, toxin production, and motility in C. difficile. IMPORTANCE Clostridioides difficile is the leading cause of antibiotic-associated diarrheal disease in the United States. During infection, C. difficile spores germinate, and the vegetative bacterial cells produce toxins that damage host tissue. In C. difficile, the sin locus is known to regulate both sporulation and toxin production. In this study, we show that Spo0A, the master regulator of sporulation, controls sin locus expression. Results from our study suggest that Spo0A directly regulates the expression of this locus by binding to its upstream DNA region. This observation adds new detail to the gene regulatory network that connects sporulation and toxin production in this pathogen.


2020 ◽  
Vol 88 (6) ◽  
Author(s):  
Jenessa A. Winston ◽  
Alissa J. Rivera ◽  
Jingwei Cai ◽  
Rajani Thanissery ◽  
Stephanie A. Montgomery ◽  
...  

ABSTRACT Clostridioides difficile infection (CDI) is associated with increasing morbidity and mortality posing an urgent threat to public health. Recurrence of CDI after successful treatment with antibiotics is high, thus necessitating discovery of novel therapeutics against this enteric pathogen. Administration of the secondary bile acid ursodeoxycholic acid (UDCA; ursodiol) inhibits the life cycles of various strains of C. difficile in vitro, suggesting that the FDA-approved formulation of UDCA, known as ursodiol, may be able to restore colonization resistance against C. difficile in vivo. However, the mechanism(s) by which ursodiol is able to restore colonization resistance against C. difficile remains unknown. Here, we confirmed that ursodiol inhibits C. difficile R20291 spore germination and outgrowth, growth, and toxin activity in a dose-dependent manner in vitro. In a murine model of CDI, exogenous administration of ursodiol resulted in significant alterations in the bile acid metabolome with little to no changes in gut microbial community structure. Ursodiol pretreatment resulted in attenuation of CDI pathogenesis early in the course of disease, which coincided with alterations in the cecal and colonic inflammatory transcriptome, bile acid-activated receptors nuclear farnesoid X receptor (FXR) and transmembrane G-protein-coupled membrane receptor 5 (TGR5), which are able to modulate the innate immune response through signaling pathways such as NF-κB. Although ursodiol pretreatment did not result in a consistent decrease in the C. difficile life cycle in vivo, it was able to attenuate an overly robust inflammatory response that is detrimental to the host during CDI. Ursodiol remains a viable nonantibiotic treatment and/or prevention strategy against CDI. Likewise, modulation of the host innate immune response via bile acid-activated receptors FXR and TGR5 represents a new potential treatment strategy for patients with CDI.


mBio ◽  
2019 ◽  
Vol 10 (2) ◽  
Author(s):  
Adrianne N. Edwards ◽  
Brandon R. Anjuwon-Foster ◽  
Shonna M. McBride

ABSTRACTClostridioides difficileinfection (CDI) is a toxin-mediated diarrheal disease. Several factors have been identified that influence the production of the two majorC. difficiletoxins, TcdA and TcdB, but prior published evidence suggested that additional unknown factors were involved in toxin regulation. Previously, we identified aC. difficileregulator, RstA, that promotes sporulation and represses motility and toxin production. We observed that the predicted DNA-binding domain of RstA was required for RstA-dependent repression of toxin genes, motility genes, andrstAtranscription. In this study, we further investigated the regulation of toxin and motility gene expression by RstA. DNA pulldown assays confirmed that RstA directly binds therstApromoter via the predicted DNA-binding domain. Through mutational analysis of therstApromoter, we identified several nucleotides that are important for RstA-dependent transcriptional regulation. Further, we observed that RstA directly binds and regulates the promoters of the toxin genestcdAandtcdB, as well as the promoters for thesigDandtcdRgenes, which encode regulators of toxin gene expression. Complementation analyses with theClostridium perfringensRstA ortholog and a multispecies chimeric RstA protein revealed that theC. difficileC-terminal domain is required for RstA DNA-binding activity, suggesting that species-specific signaling controls RstA function. Our data demonstrate that RstA is a transcriptional repressor that autoregulates its own expression and directly inhibits transcription of the two toxin genes and two positive toxin regulators, thereby acting at multiple regulatory points to control toxin production.IMPORTANCEClostridioides difficileis an anaerobic, gastrointestinal pathogen of humans and other mammals.C. difficileproduces two major toxins, TcdA and TcdB, which cause the symptoms of the disease, and forms dormant endospores to survive the aerobic environment outside the host. A recently discovered regulatory factor, RstA, inhibits toxin production and positively influences spore formation. Herein, we determine that RstA directly binds its own promoter DNA to repress its own gene transcription. In addition, our data demonstrate that RstA directly represses toxin gene expression and gene expression of two toxin gene activators, TcdR and SigD, creating a complex regulatory network to tightly control toxin production. This study provides a novel regulatory link betweenC. difficilesporulation and toxin production. Further, our data suggest thatC. difficiletoxin production is regulated through a direct, species-specific sensing mechanism.


2016 ◽  
Vol 60 (6) ◽  
pp. 3519-3523 ◽  
Author(s):  
Bradley T. Endres ◽  
Eugénie Bassères ◽  
Mohammed Khaleduzzaman ◽  
M. Jahangir Alam ◽  
Laurent Chesnel ◽  
...  

Surotomycin is a cyclic lipopeptide in development forClostridium difficile-associated diarrhea. This study aimed to assess the impact of surotomycin exposure onC. difficiletoxin A and B concentrations and the associated changes in immune response in comparison to vancomycin and metronidazole. Time-kill curve assays were performed using strain R20291 (BI/NAP1/027) at supra-MICs (4× and 40×) and sub-MICs (0.5×) of surotomycin and comparators. Following treatment, CFU counts, toxin A and B concentrations, and cellular morphological changes using scanning electron microscopy were examined. Inflammatory response was determined by measuring interleukin-8 (IL-8) concentrations from polarized Caco-2 cells exposed to antibiotic-treatedC. difficilegrowth media. Supra-MICs (4× and 40×) of surotomycin resulted in a reduction of vegetative cells over 72 h (4-log difference,P< 0.01) compared to controls. These results correlated with decreases of 77% and 68% in toxin A and B production at 48 h, respectively (P< 0.005, each), which resulted in a significant reduction in IL-8 concentration compared to controls. Similar results were observed with comparator antibiotics. Bacterial cell morphology showed that the cell wall was broken apart by surotomycin treatment at supra-MICs while sub-MIC studies showed a “deflated” phenotype plus a rippling effect. These results suggest that surotomycin has potent killing effects onC. difficilethat results in reduced toxin production and attenuates the immune response similar to comparator antibiotics. The morphological data also confirm observations that surotomycin is a membrane-active antibiotic.


mSphere ◽  
2021 ◽  
Author(s):  
Adrianne N. Edwards ◽  
Caitlin L. Willams ◽  
Nivedita Pareek ◽  
Shonna M. McBride ◽  
Rita Tamayo

Many bacterial organisms utilize the small signaling molecule cyclic diguanylate (c-di-GMP) to regulate important physiological processes, including motility, toxin production, biofilm formation, and colonization. c-di-GMP inhibits motility and toxin production and promotes biofilm formation and colonization in the anaerobic, gastrointestinal pathogen Clostridioides difficile . However, the impact of c-di-GMP on C. difficile spore formation, a critical step in this pathogen’s life cycle, is unknown.


2020 ◽  
Vol 65 (1) ◽  
pp. e01401-20
Author(s):  
Hannah C. Harris ◽  
Emma L. Best ◽  
Charmaine Normington ◽  
Nathalie Saint-Lu ◽  
Frédérique Sablier-Gallis ◽  
...  

ABSTRACTA healthy, intact gut microbiota is often resistant to colonization by gastrointestinal pathogens. During periods of dysbiosis, however, organisms such as Clostridioides difficile can thrive. We describe an optimized in vitro colonization resistance assay for C. difficile in stool (CRACS) and demonstrate the utility of this assay by assessing changes in colonization resistance following antibiotic exposure. Fecal samples were obtained from healthy volunteers (n = 6) and from healthy subjects receiving 5 days of moxifloxacin (n = 11) or no antibiotics (n = 10). Samples were separated and either not manipulated (raw) or sterilized (autoclaved or filtered) prior to inoculation with C. difficile ribotype 027 spores and anaerobic incubation for 72 h. Different methods of storing fecal samples were also investigated in order to optimize the CRACS. In healthy, raw fecal samples, incubation with spores did not lead to increased C. difficile total viable counts (TVCs) or cytotoxin detection. In contrast, increased C. difficile TVCs and cytotoxin detection occurred in sterilized healthy fecal samples or those from antibiotic-treated individuals. The CRACS was functional with fecal samples stored at either 4°C or −80°C but not with those stored with glycerol (12% or 30% [vol/vol]). Our data show that the CRACS successfully models in vitro the loss of colonization resistance and subsequent C. difficile proliferation and toxin production. The CRACS could be used as a proxy for C. difficile infection in clinical studies or to determine if an individual is at risk of developing C. difficile infection or other potential infections occurring due to a loss of colonization resistance.


2020 ◽  
Vol 64 (6) ◽  
Author(s):  
Nader S. Abutaleb ◽  
Mohamed N. Seleem

ABSTRACT Clostridioides difficile, the leading cause of nosocomial infections, is an urgent health threat worldwide. The increased incidence and severity of disease, the high recurrence rates, and the dearth of effective anticlostridial drugs have created an urgent need for new therapeutic agents. In an effort to discover new drugs for the treatment of Clostridioides difficile infections (CDIs), we investigated a panel of FDA-approved antiparasitic drugs against C. difficile and identified diiodohydroxyquinoline (DIHQ), an FDA-approved oral antiamoebic drug. DIHQ exhibited potent activity against 39 C. difficile isolates, inhibiting growth of 50% and 90% of these isolates at concentrations of 0.5 μg/ml and 2 μg/ml, respectively. In a time-kill assay, DIHQ was superior to vancomycin and metronidazole, reducing a high bacterial inoculum by 3 log10 within 6 h. Furthermore, DIHQ reacted synergistically with vancomycin and metronidazole against C. difficile in vitro. Moreover, at subinhibitory concentrations, DIHQ was superior to vancomycin and metronidazole in inhibiting two key virulence factors of C. difficile, toxin production and spore formation. Additionally, DIHQ did not inhibit the growth of key species that compose the host intestinal microbiota, such as Bacteroides, Bifidobacterium, and Lactobacillus spp. Collectively, our results indicate that DIHQ is a promising anticlostridial drug that warrants further investigation as a new therapeutic for CDIs.


2019 ◽  
Vol 86 (4) ◽  
Author(s):  
Daniela Wetzel ◽  
Shonna M. McBride

ABSTRACT Clostridioides difficile is a pathogenic bacterium that infects the human colon to cause diarrheal disease. Growth of the bacterium is known to be dependent on certain bile acids, oxygen levels, and nutrient availability in the intestine, but how the environmental pH can influence C. difficile is mostly unknown. Previous studies indicated that C. difficile modulates the intestinal pH, and prospective cohort studies have found a strong association between a more alkaline fecal pH and C. difficile infection. Based on these data, we hypothesized that C. difficile physiology can be affected by various pH conditions. In this study, we investigated the impact of a range of pH conditions on C. difficile to assess potential effects on growth, sporulation, motility, and toxin production in the strains 630Δerm and R20291. We observed pH-dependent differences in sporulation rate, spore morphology, and viability. Sporulation frequency was lowest under acidic conditions, and differences in cell morphology were apparent at low pH. In alkaline environments, C. difficile sporulation was greater for strain 630Δerm, whereas R20291 produced relatively high levels of spores in a broad range of pH conditions. Rapid changes in pH during exponential growth impacted sporulation similarly among the strains. Furthermore, we observed an increase in C. difficile motility with increases in pH, and strain-dependent differences in toxin production under acidic conditions. The data demonstrate that pH is an important parameter that affects C. difficile physiology and may reveal relevant insights into the growth and dissemination of this pathogen. IMPORTANCE Clostridioides difficile is an anaerobic bacterium that causes gastrointestinal disease. C. difficile forms dormant spores which can survive harsh environmental conditions, allowing their spread to new hosts. In this study, we determine how intestinally relevant pH conditions impact C. difficile physiology in the two divergent strains, 630Δerm and R20291. Our data demonstrate that low pH conditions reduce C. difficile growth, sporulation, and motility. However, toxin production and spore morphology were differentially impacted in the two strains at low pH. In addition, we observed that alkaline environments reduce C. difficile growth, but increase cell motility. When pH was adjusted rapidly during growth, we observed similar impacts on both strains. This study provides new insights into the phenotypic diversity of C. difficile grown under diverse pH conditions present in the intestinal tract, and demonstrates similarities and differences in the pH responses of different C. difficile isolates.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S828-S828
Author(s):  
Travis J Carlson ◽  
Bradley T Endres ◽  
Julie Le Pham ◽  
Anne J Gonzales-Luna ◽  
Faris S Alnezary ◽  
...  

Abstract Background The ability of Clostridioides difficile to cause clinical disease in humans is dependent on toxin production. Significantly fewer eosinophils are seen in the peripheral blood of mice infected with a binary toxin positive (CDT+) C. difficile strain. Furthermore, the presence of CDT and eosinopenia have separately been associated with increased mortality in humans with C. difficile infection (CDI). We hypothesized that CDI due to a CDT+ C. difficile strain accompanied by peripheral eosinopenia would be associated with higher odds of inpatient mortality. Methods This multicenter, retrospective cohort study included all patients ≥ 18 years of age with toxigenic CDI in which specimen ribotype data were available as part of our ongoing surveillance study. The cohort was stratified by eosinophil count (0.0 cells/μL vs. > 0.0 cells/μL). The primary outcome was inpatient mortality. A logistic regression model was developed modeling inpatient mortality as a function of the available patient covariates. All P-values were from 2-sided tests, and results were deemed statistically significant at P < 0.05. Results A total of 688 patients from 13 institutions in six cities were included. Of those, 132 had a baseline eosinophil count of 0.0 cells/µL and 556 had a baseline eosinophil count > 0.0 cells/µL. While the odds of inpatient mortality were higher among patients with eosinopenia and those infected with a CDT+ ribotype, the combination of these variables remained an independent predictor of inpatient mortality after adjusting for CCI score, WBC count, and serum albumin level (OR, 7.84; 95% CI, 1.85–33.20; P = 0.005). Conclusion This is the first attempt to study the in vivo relationship between CDT presence, human immune response, and CDI clinical outcome. We identified an association between CDT presence with concomitant eosinopenia and worsened CDI outcomes. Healthcare facilities should consider identifying this important subset of patients at the time of CDI diagnosis. Future CDI drug development might benefit from targeting C. difficile properties that impair host immune response, which may in turn decrease adverse clinical outcomes associated with this disease. Disclosures All authors: No reported disclosures.


2019 ◽  
Vol 202 (2) ◽  
Author(s):  
Adrianne N. Edwards ◽  
Ellen G. Krall ◽  
Shonna M. McBride

ABSTRACT The anaerobic spore former Clostridioides difficile causes significant diarrheal disease in humans and other mammals. Infection begins with the ingestion of dormant spores, which subsequently germinate within the host gastrointestinal tract. There, the vegetative cells proliferate and secrete two exotoxins, TcdA and TcdB, which cause disease symptoms. Although spore formation and toxin production are critical for C. difficile pathogenesis, the regulatory links between these two physiological processes are not well understood and are strain dependent. Previously, we identified a conserved C. difficile regulator, RstA, that promotes sporulation initiation through an unknown mechanism and directly and indirectly represses toxin and motility gene transcription in the historical isolate 630Δerm. To test whether perceived strain-dependent differences in toxin production and sporulation are mediated by RstA, we created an rstA mutant in the epidemic ribotype 027 strain R20291. RstA affected sporulation and toxin gene expression similarly but more robustly in R20291 than in 630Δerm. In contrast, no effect on motility gene expression was observed in R20291. Reporter assays measuring transcriptional regulation of tcdR, the sigma factor gene essential for toxin gene expression, identified sequence-dependent effects influencing repression by RstA and CodY, a global nutritional sensor, in four diverse C. difficile strains. Finally, sequence- and strain-dependent differences were evident in RstA negative autoregulation of rstA transcription. Altogether, our data suggest that strain-dependent differences in RstA regulation contribute to the sporulation and toxin phenotypes observed in R20291. Our data establish RstA as an important regulator of C. difficile virulence traits. IMPORTANCE Two critical traits of Clostridioides difficile pathogenesis are toxin production, which causes disease symptoms, and spore formation, which permits survival outside the gastrointestinal tract. The multifunctional regulator RstA promotes sporulation and prevents toxin production in the historical strain 630Δerm. Here, we show that RstA exhibits stronger effects on these phenotypes in an epidemic isolate, R20291, and additional strain-specific effects on toxin and rstA expression are evident. Our data demonstrate that sequence-specific differences within the promoter for the toxin regulator TcdR contribute to the regulation of toxin production by RstA and CodY. These sequence differences account for some of the variability in toxin production among isolates and may allow strains to differentially control toxin production in response to a variety of signals.


Sign in / Sign up

Export Citation Format

Share Document