scholarly journals Neurotransmitter System-Targeting Drugs Antagonize Growth of the Q Fever Agent, Coxiella burnetii, in Human Cells

mSphere ◽  
2021 ◽  
Author(s):  
Marissa S. Fullerton ◽  
Punsiri M. Colonne ◽  
Amanda L. Dragan ◽  
Katelynn R. Brann ◽  
Richard C. Kurten ◽  
...  

Coxiella burnetii causes the debilitating disease Q fever in humans. This infection is difficult to treat with current antibiotics and can progress to long-term, potentially fatal infection in immunocompromised individuals or when treatment is delayed.

2012 ◽  
Vol 80 (6) ◽  
pp. 1980-1986 ◽  
Author(s):  
Laura J. MacDonald ◽  
Richard C. Kurten ◽  
Daniel E. Voth

ABSTRACTCoxiella burnetiiis the bacterial agent of human Q fever, an acute, flu-like illness that can present as chronic endocarditis in immunocompromised individuals. Following aerosol-mediated transmission,C. burnetiireplicates in alveolar macrophages in a unique phagolysosome-like parasitophorous vacuole (PV) required for survival. The mechanisms ofC. burnetiiintracellular survival are poorly defined and a recent Q fever outbreak in the Netherlands emphasizes the need for better understanding this unique host-pathogen interaction. We recently demonstrated that inhibition of host cyclic AMP-dependent protein kinase (PKA) activity negatively impacts PV formation. In the current study, we confirmed PKA involvement in PV biogenesis and probed the role of PKA signaling duringC. burnetiiinfection of macrophages. Using PKA-specific inhibitors, we found the kinase was needed for biogenesis of prototypical PV andC. burnetiireplication. PKA and downstream targets were differentially phosphorylated throughout infection, suggesting prolonged regulation of the pathway. Importantly, the pathogen actively triggered PKA activation, which was also required for PV formation by virulentC. burnetiiisolates during infection of primary human alveolar macrophages. A subset of PKA-specific substrates were differentially phosphorylated duringC. burnetiiinfection, suggesting the pathogen uses PKA signaling to control distinct host cell responses. Collectively, the current results suggest a versatile role for PKA inC. burnetiiinfection and indicate virulent organisms usurp host kinase cascades for efficient intracellular growth.


2015 ◽  
Vol 83 (3) ◽  
pp. 1190-1198 ◽  
Author(s):  
Joseph G. Graham ◽  
Caylin G. Winchell ◽  
Uma M. Sharma ◽  
Daniel E. Voth

Coxiella burnetiicauses human Q fever, a zoonotic disease that presents with acute flu-like symptoms and can result in chronic life-threatening endocarditis. In human alveolar macrophages,C. burnetiiuses a Dot/Icm type IV secretion system (T4SS) to generate a phagolysosome-like parasitophorous vacuole (PV) in which to replicate. The T4SS translocates effector proteins, or substrates, into the host cytosol, where they mediate critical cellular events, including interaction with autophagosomes, PV formation, and prevention of apoptosis. Over 100C. burnetiiDot/Icm substrates have been identified, but the function of most remains undefined. Here, we identified a novel Dot/Icm substrate-encoding open reading frame (CbuD1884) present in allC. burnetiiisolates except the Nine Mile reference isolate, where the gene is disrupted by a frameshift mutation, resulting in a pseudogene. The CbuD1884 protein contains two transmembrane helices (TMHs) and a coiled-coil domain predicted to mediate protein-protein interactions. The C-terminal region of the protein contains a predicted Dot/Icm translocation signal and was secreted by the T4SS, while the N-terminal portion of the protein was not secreted. When ectopically expressed in eukaryotic cells, the TMH-containing N-terminal region of the CbuD1884 protein trafficked to the endoplasmic reticulum (ER), with the C terminus dispersed nonspecifically in the host cytoplasm. This new Dot/Icm substrate is now termed ElpA (ER-localizingproteinA). Full-length ElpA triggered substantial disruption of ER structure and host cell secretory transport. These results suggest that ElpA is a pathotype-specific T4SS effector that influences ER function duringC. burnetiiinfection.


2020 ◽  
Vol 88 (12) ◽  
Author(s):  
Zachary P. Howard ◽  
Anders Omsland

ABSTRACT Coxiella burnetii is a zoonotic bacterial obligate intracellular parasite and the cause of query (Q) fever. During natural infection of female animals, C. burnetii shows tropism for the placenta and is associated with late-term abortion, at which time the pathogen titer in placental tissue can exceed one billion bacteria per gram. During later stages of pregnancy, placental trophoblasts serve as the major source of progesterone, a steroid hormone known to affect the replication of some pathogens. During infection of placenta-derived JEG-3 cells, C. burnetii showed sensitivity to progesterone but not the immediate precursor pregnenolone or estrogen, another major mammalian steroid hormone. Using host cell-free culture, progesterone was determined to have a direct inhibitory effect on C. burnetii replication. Synergy between the inhibitory effect of progesterone and the efflux pump inhibitors verapamil and 1-(1-naphthylmethyl)-piperazine is consistent with a role for efflux pumps in preventing progesterone-mediated inhibition of C. burnetii activity. The sensitivity of C. burnetii to progesterone, but not structurally related molecules, is consistent with the ability of progesterone to influence pathogen replication in progesterone-producing tissues.


2019 ◽  
Vol 87 (12) ◽  
Author(s):  
A. E. Gregory ◽  
E. J. van Schaik ◽  
K. E. Russell-Lodrigue ◽  
A. P. Fratzke ◽  
J. E. Samuel

ABSTRACT Coxiella burnetii, the etiological agent of Q fever, is a Gram-negative bacterium transmitted to humans by inhalation of contaminated aerosols. Acute Q fever is often self-limiting, presenting as a febrile illness that can result in atypical pneumonia. In some cases, Q fever becomes chronic, leading to endocarditis that can be life threatening. The formalin-inactivated whole-cell vaccine (WCV) confers long-term protection but has significant side effects when administered to presensitized individuals. Designing new vaccines against C. burnetii remains a challenge and requires the use of clinically relevant modes of transmission in appropriate animal models. We have developed a safe and reproducible C. burnetii aerosol challenge in three different animal models to evaluate the effects of pulmonary acquired infection. Using a MicroSprayer aerosolizer, BL/6 mice and Hartley guinea pigs were infected intratracheally with C. burnetii Nine Mile phase I (NMI) and demonstrated susceptibility as determined by measuring bacterial growth in the lungs and subsequent dissemination to the spleen. Histological analysis of lung tissue showed significant pathology associated with disease, which was more severe in guinea pigs. Infection using large-particle aerosol (LPA) delivery was further confirmed in nonhuman primates, which developed fever and pneumonia. We also demonstrate that vaccinating mice and guinea pigs with WCV prior to LPA challenge is capable of eliciting protective immunity that significantly reduces splenomegaly and the bacterial burden in spleen and lung tissues. These data suggest that these models can have appreciable value in using the LPA delivery system to study pulmonary Q fever pathogenesis as well as designing vaccine countermeasures to C. burnetii aerosol transmission.


2016 ◽  
Vol 84 (6) ◽  
pp. 1722-1734 ◽  
Author(s):  
Katharina Sobotta ◽  
Kirstin Hillarius ◽  
Marvin Mager ◽  
Katharina Kerner ◽  
Carsten Heydel ◽  
...  

Although domestic ruminants have long been recognized as the main source of human Q fever, little is known about the lifestyle that the obligate intracellular Gram-negative bacteriumCoxiella burnetiiadopts in its animal host. Because macrophages are considered natural target cells of the pathogen, we established primary bovine monocyte-derived macrophages (MDM) as anin vitroinfection model to study reservoir host-pathogen interactions at the cellular level. In addition, bovine alveolar macrophages were included to take cell type peculiarities at a host entry site into account. Cell cultures were inoculated with the virulent strain Nine Mile I (NMI; phase I) or the avirulent strain Nine Mile II (NMII; phase II). Macrophages from both sources internalized NMI and NMII. MDM were particularly permissive for NMI internalization, but NMI and NMII replicated with similar kinetics in these cells. MDM responded to inoculation with a general upregulation of Th1-related cytokines such as interleukin-1β (IL-1β), IL-12, and tumor necrosis factor alpha (TNF-α) early on (3 h postinfection). However, inflammatory responses rapidly declined whenC. burnetiireplication started.C. burnetiiinfection inhibited translation and release of IL-1β and vastly failed to stimulate increased expression of activation markers, such as CD40, CD80, CD86, and major histocompatibility complex (MHC) molecules. Such capability of limiting proinflammatory responses may helpCoxiellato protect itself from clearance by the host immune system. The findings provide the first detailed insight intoC. burnetii-macrophage interactions in ruminants and may serve as a basis for assessing the virulence and the host adaptation ofC. burnetiistrains.


2013 ◽  
Vol 81 (12) ◽  
pp. 4604-4614 ◽  
Author(s):  
Alexandra Elliott ◽  
Ying Peng ◽  
Guoquan Zhang

ABSTRACTCoxiella burnetiiis an obligate intracellular bacterium that causes acute and chronic Q fever in humans. Human Q fever is mainly transmitted by aerosol infection. However, there is a fundamental gap in the knowledge regarding the mechanisms of pulmonary immunity againstC. burnetiiinfection. This study focused on understanding the interaction betweenC. burnetiiand innate immune cellsin vitroandin vivo. Both virulentC. burnetiiNine Mile phase I (NMI) and avirulent Nine Mile phase II (NMII) were able to infect neutrophils, while the infection rates were lower than 29%, suggesting thatC. burnetiican infect neutrophils, but infection is limited. Interestingly,C. burnetiiinside neutrophils can infect and replicate within macrophages, suggesting that neutrophils cannot killC. burnetiiandC. burnetiimay be using infection of neutrophils as an evasive strategy to infect macrophages. To elucidate the mechanisms of the innate immune response toC. burnetiinatural infection, SCID mice were exposed to aerosolizedC. burnetii. Surprisingly, neutrophil influx into the lungs was delayed until day 7 postinfection in both NMI- and NMII-infected mice. This result suggests that neutrophils may play a unique role in the early immune response against aerosolizedC. burnetii. Studying the interaction betweenC. burnetiiand the innate immune system can provide a model system for understanding how the bacteria evade early immune responses to cause infection.


2019 ◽  
Vol 201 (23) ◽  
Author(s):  
Charles L. Larson ◽  
Paul A. Beare ◽  
Robert A. Heinzen

ABSTRACT Macrophage parasitism by Coxiella burnetii, the cause of human Q fever, requires the translocation of proteins with effector functions directly into the host cell cytosol via a Dot/Icm type 4B secretion system (T4BSS). Secretion by the analogous Legionella pneumophila T4BSS involves signal sequences within the C-terminal and internal domains of effector proteins. The cytoplasmic chaperone pair IcmSW promotes secretion and binds internal sites distinct from signal sequences. In the present study, we investigated requirements of C. burnetii IcmS for host cell parasitism and effector translocation. A C. burnetii icmS deletion mutant (ΔicmS) exhibited impaired replication in Vero epithelial cells, deficient formation of the Coxiella-containing vacuole, and aberrant T4BSS secretion. Three secretion phenotypes were identified from a screen of 50 Dot/Icm substrates: IcmS dependent (secreted by only wild-type bacteria), IcmS independent (secreted by both wild-type and ΔicmS bacteria), or IcmS inhibited (secreted by only ΔicmS bacteria). Secretion was assessed for N-terminal or C-terminal truncated forms of CBU0794 and CBU1525. IcmS-inhibited secretion of CBU1525 required a C-terminal secretion signal whereas IcmS-dependent secretion of CBU0794 was directed by C-terminal and internal signals. Interchange of the C-terminal 50 amino acids of CBU0794 and CBU1525 revealed that sites within the C terminus regulate IcmS dependency. Glutathione S-transferase-tagged IcmSW bound internal sequences of IcmS-dependent and -inhibited substrates. Thus, the growth defect of the C. burnetii ΔicmS strain is associated with a loss of T4BSS chaperone activity that both positively and negatively regulates effector translocation. IMPORTANCE The intracellular pathogen Coxiella burnetii employs a type 4B secretion system (T4BSS) that promotes growth by translocating effectors of eukaryotic pathways into host cells. T4BSS regulation modeled in Legionella pneumophila indicates IcmS facilitates effector translocation. Here, we characterized type 4B secretion by a Coxiella ΔicmS mutant that exhibits intracellular growth defects. T4BSS substrates demonstrated increased, equivalent, or decreased secretion by the ΔicmS mutant relative to wild-type Coxiella. Similar to the Legionella T4BSS, IcmS dependency in Coxiella was determined by C-terminal and/or internal secretion signals. However, IcmS inhibited secretion of some effectors by Coxiella that were previously shown to be translocated by Legionella. Thus, Coxiella has a unique IcmS regulatory mechanism that both positively and negatively regulates T4BSS export.


2016 ◽  
Vol 84 (5) ◽  
pp. 1438-1445 ◽  
Author(s):  
Joseph G. Graham ◽  
Caylin G. Winchell ◽  
Richard C. Kurten ◽  
Daniel E. Voth

Coxiella burnetiiis an intracellular bacterial pathogen that causes human Q fever, an acute debilitating flu-like illness that can also present as chronic endocarditis. Disease typically occurs following inhalation of contaminated aerosols, resulting in an initial pulmonary infection. In human cells,C. burnetiigenerates a replication niche termed the parasitophorous vacuole (PV) by directing fusion with autophagosomes and lysosomes.C. burnetiirequires this lysosomal environment for replication and uses a Dot/Icm type IV secretion system to generate the large PV. However, we do not understand howC. burnetiievades the intracellular immune surveillance that triggers an inflammatory response. We recently characterized human alveolar macrophage (hAM) infectionin vitroand found that avirulentC. burnetiitriggers sustained interleukin-1β (IL-1β) production. Here, we evaluated infection ofex vivohuman lung tissue, defining a valuable approach for characterizingC. burnetiiinteractions with a human host. Within whole lung tissue,C. burnetiipreferentially replicated in hAMs. Additionally, IL-1β production correlated with formation of an apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC)-dependent inflammasome in response to infection. We also assessed potential activation of a human-specific noncanonical inflammasome and found that caspase-4 and caspase-5 are processed during infection. Interestingly, although inflammasome activation is closely linked to pyroptosis, lytic cell death did not occur followingC. burnetii-triggered inflammasome activation, indicating an atypical response after intracellular detection. Together, these studies provide a novel platform for studying the human innate immune response toC. burnetii.


2017 ◽  
Vol 5 (38) ◽  
Author(s):  
Paul A. Beare ◽  
Brendan M. Jeffrey ◽  
Craig A. Martens ◽  
Robert A. Heinzen

ABSTRACT In the current study, we determined the draft genome sequences of three Coxiella burnetii human disease isolates. The Coxiella burnetii Turkey (RSA315) and Dyer (RSA345) strains were isolated from acute Q fever patients, while the Ko (Q229) strain was isolated from a Q fever endocarditis patient.


2011 ◽  
Vol 77 (18) ◽  
pp. 6516-6523 ◽  
Author(s):  
A. de Bruin ◽  
A. de Groot ◽  
L. de Heer ◽  
J. Bok ◽  
P. R. Wielinga ◽  
...  

ABSTRACTQ fever, caused byCoxiella burnetii, is a zoonosis with a worldwide distribution. A large rural area in the southeast of the Netherlands was heavily affected by Q fever between 2007 and 2009. This initiated the development of a robust and internally controlled multiplex quantitative PCR (qPCR) assay for the detection ofC. burnetiiDNA in veterinary and environmental matrices on suspected Q fever-affected farms. The qPCR detects threeC. burnetiitargets (icd,com1, and IS1111) and oneBacillus thuringiensisinternal control target (cry1b).Bacillus thuringiensisspores were added to samples to control both DNA extraction and PCR amplification. The performance of the qPCR assay was investigated and showed a high efficiency; a limit of detection of 13.0, 10.6, and 10.4 copies per reaction for the targetsicd,com1, and IS1111, respectively; and no cross-reactivity with the nontarget organisms tested. Screening forC. burnetiiDNA on 29 suspected Q fever-affected farms during the Q fever epidemic in 2008 showed that swabs from dust-accumulating surfaces contained higher levels ofC. burnetiiDNA than vaginal swabs from goats or sheep. PCR inhibition by coextracted substances was observed in some environmental samples, and 10- or 100-fold dilutions of samples were sufficient to obtain interpretable signals for both theC. burnetiitargets and the internal control. The inclusion of an internal control target and threeC. burnetiitargets in one multiplex qPCR assay showed that complex veterinary and environmental matrices can be screened reliably for the presence ofC. burnetiiDNA during an outbreak.


Sign in / Sign up

Export Citation Format

Share Document