scholarly journals Redefining the Clostridioides difficile σB Regulon: σB Activates Genes Involved in Detoxifying Radicals That Can Result from the Exposure to Antimicrobials and Hydrogen Peroxide

mSphere ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
Ilse M. Boekhoud ◽  
Annika-Marisa Michel ◽  
Jeroen Corver ◽  
Dieter Jahn ◽  
Wiep Klaas Smits

ABSTRACT In many Gram-positive bacteria, the general stress response is regulated at the transcriptional level by the alternative sigma factor sigma B (σB). In C. difficile, σB has been implicated in protection against stressors such as reactive oxygen species (ROS) and antimicrobial compounds. Here, we used an anti-σB antibody to demonstrate time-limited overproduction of σB in C. difficile despite its toxicity at higher cellular concentrations. This toxicity eventually led to the loss of the plasmid used for anhydrotetracycline-induced σB gene expression. Inducible σB overproduction uncouples σB expression from its native regulatory network and allows for the refinement of the previously proposed σB regulon. At least 32% of the regulon was found to consist of genes involved in the response to reactive radicals. Direct gene activation by C. difficile σB was demonstrated through in vitro runoff transcription of specific target genes (cd0350, cd3614, cd3605, and cd2963). Finally, we demonstrated that different antimicrobials and hydrogen peroxide induce these genes in a manner dependent on this sigma factor, using a plate-based luciferase reporter assay. Together, our work suggests that lethal exposure to antimicrobials may result in the formation of toxic radicals that lead to σB-dependent gene activation. IMPORTANCE Sigma B is the alternative sigma factor governing stress response in many Gram-positive bacteria. In C. difficile, a sigB mutant shows pleiotropic transcriptional effects. Here, we determine genes that are likely direct targets of σB by evaluating the transcriptional effects of σB overproduction, provide biochemical evidence of direct transcriptional activation by σB, and show that σB-dependent genes can be activated by antimicrobials. Together, our data suggest that σB is a key player in dealing with toxic radicals.

2020 ◽  
Author(s):  
Ilse M. Boekhoud ◽  
Annika-Marisa Michel ◽  
Jeroen Corver ◽  
Dieter Jahn ◽  
Wiep Klaas Smits

AbstractIn many gram-positive bacteria the general stress response is regulated at the transcriptional level by the alternative sigma factor sigma B (σB). In C. difficile σB has been implicated in protection against stressors such as reactive oxygen species and antimicrobial compounds. Here, we used an anti-σB antibody to demonstrate time-limited overproduction of σB in C. difficile despite its toxicity at higher cellular concentrations. This toxicity eventually led to the loss of the plasmid used for anhydrotetracycline-induced σB gene expression. Inducible σB overproduction uncouples σB expression from its native regulatory network and allowed for the refinement of the previously proposed σB regulon. At least 32% the regulon was found to consist of genes involved in the response to reactive radicals. Direct gene activation by C. difficile σB was demonstrated through in vitro run-off transcription of specific target genes (cd0350, cd3614, cd3605, cd2963). Finally, we demonstrated that different antimicrobials and hydrogen peroxide induce these genes in a manner dependent on this sigma factor, using a plate-based luciferase reporter assay. Together, our work suggests that lethal exposure to antimicrobials may result in the formation of toxic radicals that lead to σB-dependent gene activation.ImportanceSigma B is the alternative sigma factor governing stress response in many gram-positive bacteria. In C. difficile, a sigB mutant shows pleiotropic transcriptional effects. Here, we determine genes that are likely direct targets of σB by evaluating the transcriptional effects of σB overproduction, provide biochemical evidence of direct transcriptional activation by σB, and show that σB-dependent genes can be activated by antimicrobials. Together our data suggest that σB is a key player in dealing with toxic radicals.


2020 ◽  
Vol 202 (21) ◽  
Author(s):  
Stéphanie Henry ◽  
Didier Lereclus ◽  
Leyla Slamti

ABSTRACT To adapt to changing and potentially hostile environments, bacteria can activate the transcription of genes under the control of alternative sigma factors, such as SigB, a master regulator of the general stress response in several Gram-positive species. Bacillus thuringiensis is a Gram-positive spore-forming invertebrate pathogen whose life cycle includes a variety of environments, including plants and the insect hemocoel or gut. Here, we assessed the role of SigB during the infectious cycle of B. thuringiensis in a Galleria mellonella insect model. We used a fluorescent reporter coupled to flow cytometry and showed that SigB was activated in vivo. We also showed that the pathogenicity of the ΔsigB mutant was severely affected when inoculated via the oral route, suggesting that SigB is critical for B. thuringiensis adaptation to the gut environment of the insect. We could not detect an effect of the sigB deletion on the survival of the bacteria or on their sporulation efficiency in the cadavers. However, the gene encoding the pleiotropic regulator Spo0A was upregulated in the ΔsigB mutant cells during the infectious process. IMPORTANCE Pathogenic bacteria often need to transition between different ecosystems, and their ability to cope with such variations is critical for their survival. Several Gram-positive species have developed an adaptive response mediated by the general stress response alternative sigma factor SigB. In order to understand the ecophysiological role of this regulator in Bacillus thuringiensis, an entomopathogenic bacterium widely used as a biopesticide, we sought to examine the fate of a ΔsigB mutant during its life cycle in the natural setting of an insect larva. This allowed us, in particular, to show that SigB was activated during infection and that it was required for the pathogenicity of B. thuringiensis via the oral route of infection.


2016 ◽  
Vol 198 (8) ◽  
pp. 1207-1217 ◽  
Author(s):  
Veronica Medrano Romero ◽  
Kazuya Morikawa

ABSTRACTThe alternative sigma factor σHhas two functions in Gram-positive bacteria: it regulates sporulation and the development of genetic competence.Listeria monocytogenesis a nonsporulating species in which competence has not yet been detected. Nevertheless, the main competence regulators and a series of orthologous genes that form the competence machinery are present in its genome; some of the competence genes play a role in optimal phagosomal escape. In this study, strains overexpressing σHand strains with a σHdeletion were used to elucidate the contribution of σHto the expression of the competence machinery genes inL. monocytogenes. Gene expression analysis showed that σHis, indeed, involved incomGandcomEregulation. Unexpectedly, we observed a unique regulation scheme in which σHand the transcription factor ComK were involved. Population-level analysis showed that even with the overexpression of both factors, only a fraction of the cells expressed the competence machinery genes. Although we could not detect competence, σHwas crucial for phagosomal escape, which implies that this alternative sigma factor has specifically evolved to regulate theL. monocytogenesintracellular life cycle.IMPORTANCEListeria monocytogenescan be an intracellular pathogen capable of causing serious infections in humans and animal species. Recently, the competence machinery genes were described as being necessary for optimal phagosomal escape, in which the transcription factor ComK plays an important role. On the other hand, our previous phylogenetic analysis suggested that the alternative sigma factor σHmight play a role in the regulation of competence genes. The present study shows that some of the competence genes belong to the σHregulon and, importantly, that σHis essential for intracellular growth, implying a unique physiological role of σHamongFirmicutes.


2016 ◽  
Vol 82 (15) ◽  
pp. 4456-4469 ◽  
Author(s):  
Claudia Guldimann ◽  
Kathryn J. Boor ◽  
Martin Wiedmann ◽  
Veronica Guariglia-Oropeza

ABSTRACTGram-positive bacteria are ubiquitous and diverse microorganisms that can survive and sometimes even thrive in continuously changing environments. The key to such resilience is the ability of members of a population to respond and adjust to dynamic conditions in the environment. In bacteria, such responses and adjustments are mediated, at least in part, through appropriate changes in the bacterial transcriptome in response to the conditions encountered. Resilience is important for bacterial survival in diverse, complex, and rapidly changing environments and requires coordinated networks that integrate individual, mechanistic responses to environmental cues to enable overall metabolic homeostasis. In many Gram-positive bacteria, a key transcriptional regulator of the response to changing environmental conditions is the alternative sigma factor σB. σBhas been characterized in a subset of Gram-positive bacteria, including the generaBacillus,Listeria, andStaphylococcus. Recent insight from next-generation-sequencing results indicates that σB-dependent regulation of gene expression contributes to resilience, i.e., the coordination of complex networks responsive to environmental changes. This review explores contributions of σBto resilience inBacillus,Listeria, andStaphylococcusand illustrates recently described regulatory functions of σB.


2011 ◽  
Vol 77 (7) ◽  
pp. 2399-2405 ◽  
Author(s):  
Junfeng Xue ◽  
Birgitte K. Ahring

ABSTRACTTo enhance the production of isoprene, a volatile 5-carbon hydrocarbon, in the Gram-positive spore-forming rod-shaped bacteriumBacillus subtilis, 1-deoxy-d-xylulose-5-phosphate synthase (Dxs) and 1-deoxy-d-xylulose-5-phosphate reductoisomerase (Dxr) were overexpressed inB. subtilisDSM 10. For the strain that overexpresses Dxs, the yield of isoprene was increased 40% over that by the wild-type strain. In the Dxr overexpression strain, the level of isoprene production was unchanged. Overexpression of Dxr together with Dxs showed an isoprene production level similar to that of the Dxs overproduction strain. The effects of external factors, such as stress factors including heat (48°C), salt (0.3 M NaCl), ethanol (1%), and oxidative (0.005% H2O2) stress, on isoprene production were further examined. Heat, salt, and H2O2induced isoprene production; ethanol inhibited isoprene production. In addition, induction and repression effects are independent of SigB, which is the general stress-responsive alternative sigma factor of Gram-positive bacteria.


2017 ◽  
Vol 200 (2) ◽  
Author(s):  
Mary E. Girard ◽  
Saumya Gopalkrishnan ◽  
Elicia D. Grace ◽  
Jennifer A. Halliday ◽  
Richard L. Gourse ◽  
...  

ABSTRACT σS is an alternative sigma factor, encoded by the rpoS gene, that redirects cellular transcription to a large family of genes in response to stressful environmental signals. This so-called σS general stress response is necessary for survival in many bacterial species and is controlled by a complex, multifactorial pathway that regulates σS levels transcriptionally, translationally, and posttranslationally in Escherichia coli. It was shown previously that the transcription factor DksA and its cofactor, ppGpp, are among the many factors governing σS synthesis, thus playing an important role in activation of the σS stress response. However, the mechanisms responsible for the effects of DksA and ppGpp have not been elucidated fully. We describe here how DksA and ppGpp directly activate the promoters for the anti-adaptor protein IraP and the small regulatory RNA DsrA, thereby indirectly influencing σS levels. In addition, based on effects of DksAN88I, a previously identified DksA variant with increased affinity for RNA polymerase (RNAP), we show that DksA can increase σS activity by another indirect mechanism. We propose that by reducing rRNA transcription, DksA and ppGpp increase the availability of core RNAP for binding to σS and also increase transcription from other promoters, including PdsrA and PiraP. By improving the translation and stabilization of σS, as well as the ability of other promoters to compete for RNAP, DksA and ppGpp contribute to the switch in the transcription program needed for stress adaptation. IMPORTANCE Bacteria spend relatively little time in log phase outside the optimized environment found in a laboratory. They have evolved to make the most of alternating feast and famine conditions by seamlessly transitioning between rapid growth and stationary phase, a lower metabolic mode that is crucial for long-term survival. One of the key regulators of the switch in gene expression that characterizes stationary phase is the alternative sigma factor σS. Understanding the factors governing σS activity is central to unraveling the complexities of growth, adaptation to stress, and pathogenesis. Here, we describe three mechanisms by which the RNA polymerase binding factor DksA and the second messenger ppGpp regulate σS levels.


mBio ◽  
2011 ◽  
Vol 2 (6) ◽  
Author(s):  
M. Elizabeth Palmer ◽  
Soraya Chaturongakul ◽  
Martin Wiedmann ◽  
Kathryn J. Boor

ABSTRACTThe stress-responsive alternative sigma factor σBis conserved across diverse Gram-positive bacterial genera. InListeria monocytogenes, σBregulates transcription of >150 genes, including genes contributing to virulence and to bacterial survival under host-associated stress conditions, such as those encountered in the human gastrointestinal lumen. An inhibitor ofL. monocytogenesσBactivity was identified by screening ~57,000 natural and synthesized small molecules using a high-throughput cell-based assay. The compound fluoro-phenyl-styrene-sulfonamide (FPSS) (IC50= 3.5 µM) downregulated the majority of genes previously identified as members of the σBregulon inL. monocytogenes10403S, thus generating a transcriptional profile comparable to that of a 10403S ΔsigBstrain. Specifically, of the 208 genes downregulated by FPSS, 75% had been identified previously as positively regulated by σB. Downregulated genes included key virulence and stress response genes, such asinlA,inlB,bsh,hfq,opuC, andbilE. From a functional perspective, FPSS also inhibitedL. monocytogenesinvasion of human intestinal epithelial cells and bile salt hydrolase activity. The ability of FPSS to inhibit σBactivity in bothL. monocytogenesandBacillus subtilisindicates its utility as a specific inhibitor of σBacross multiple Gram-positive genera.IMPORTANCEThe σBtranscription factor regulates expression of genes responsible for bacterial survival under changing environmental conditions and for virulence; therefore, this alternative sigma factor is important for transmission ofL. monocytogenesand other Gram-positive bacteria. Regulation of σBactivity is complex and tightly controlled, reflecting the key role of this factor in bacterial metabolism. We present multiple lines of evidence indicating that fluoro-phenyl-styrene-sulfonamide (FPSS) specifically inhibits activity of σBacross Gram-positive bacterial genera, i.e., in bothListeria monocytogenesandBacillus subtilis. Therefore, FPSS is an important new tool that will enable novel approaches for exploring complex regulatory networks inL. monocytogenesand other Gram-positive pathogens and for investigating small-molecule applications for controlling pathogen transmission.


2007 ◽  
Vol 189 (12) ◽  
pp. 4384-4390 ◽  
Author(s):  
Willem van Schaik ◽  
Menno van der Voort ◽  
Douwe Molenaar ◽  
Roy Moezelaar ◽  
Willem M. de Vos ◽  
...  

ABSTRACT The alternative sigma factor σB has an important role in the acquisition of stress resistance in many gram-positive bacteria, including the food-borne pathogen Bacillus cereus. Here, we describe the identification of the set of σB-regulated genes in B. cereus by DNA microarray analysis of the transcriptome upon a mild heat shock. Twenty-four genes could be identified as being σB dependent as witnessed by (i) significantly lower expression levels of these genes in mutants with a deletion of sigB and rsbY (which encode the alternative sigma factor σB and a crucial positive regulator of σB activity, respectively) than in the parental strain B. cereus ATCC 14579 and (ii) increased expression of these genes upon a heat shock. Newly identified σB-dependent genes in B. cereus include a histidine kinase and two genes that have predicted functions in spore germination. This study shows that the σB regulon of B. cereus is considerably smaller than that of other gram-positive bacteria. This appears to be in line with phylogenetic analyses where σB of the B. cereus group was placed close to the ancestral form of σB in gram-positive bacteria. The data described in this study and previous studies in which the complete σB regulon of the gram-positive bacteria Bacillus subtilis, Listeria monocytogenes, and Staphylococcus aureus were determined enabled a comparison of the sets of σB-regulated genes in the different gram-positive bacteria. This showed that only three genes (rsbV, rsbW, and sigB) are conserved in their σB dependency in all four bacteria, suggesting that the σB regulon of the different gram-positive bacteria has evolved to perform niche-specific functions.


2013 ◽  
Vol 79 (21) ◽  
pp. 6737-6746 ◽  
Author(s):  
Hilda Tiricz ◽  
Attila Szűcs ◽  
Attila Farkas ◽  
Bernadett Pap ◽  
Rui M. Lima ◽  
...  

ABSTRACTLeguminous plants establish symbiosis with nitrogen-fixing alpha- and betaproteobacteria, collectively called rhizobia, which provide combined nitrogen to support plant growth. Members of the inverted repeat-lacking clade of legumes impose terminal differentiation on their endosymbiotic bacterium partners with the help of the nodule-specific cysteine-rich (NCR) peptide family composed of close to 600 members. Among the few tested NCR peptides, cationic ones had antirhizobial activity measured by reduction or elimination of the CFU and uptake of the membrane-impermeable dye propidium iodide. Here, the antimicrobial spectrum of two of these peptides, NCR247 and NCR335, was investigated, and their effect on the transcriptome of the natural targetSinorhizobium melilotiwas characterized. Both peptides were able to kill quickly a wide range of Gram-negative and Gram-positive bacteria; however, their spectra were only partially overlapping, and differences were found also in their efficacy on given strains, indicating that the actions of NCR247 and NCR335 might be similar though not identical. Treatment ofS. meliloticultures with either peptide resulted in a quick downregulation of genes involved in basic cellular functions, such as transcription-translation and energy production, as well as upregulation of genes involved in stress and oxidative stress responses and membrane transport. Similar changes provoked mainly in Gram-positive bacteria by antimicrobial agents were coupled with the destruction of membrane potential, indicating that it might also be a common step in the bactericidal actions of NCR247 and NCR335.


2013 ◽  
Vol 80 (3) ◽  
pp. 1062-1071 ◽  
Author(s):  
Jian Wang ◽  
Yong Gao ◽  
Kunling Teng ◽  
Jie Zhang ◽  
Shutao Sun ◽  
...  

ABSTRACTLantibiotics are ribosomally synthesized, posttranslationally modified antimicrobial peptides. Their biosynthesis genes are usually organized in gene clusters, which are mainly found in Gram-positive bacteria, including pathogenic streptococci. Three highly virulentStreptococcus suisserotype 2 strains (98HAH33, 05ZYH33, and SC84) have been shown to contain an 89K pathogenicity island. Here, on these islands, we unveiled and reannotated a putative lantibiotic locus designatedsuiwhich contains a virulence-associated two-component regulator,suiK-suiR. In silicoanalysis revealed that the putative lantibiotic modification genesuiMwas interrupted by a 7.9-kb integron and that other biosynthesis-related genes contained various frameshift mutations. By reconstituting the intactsuiMinEscherichia colitogether with a semi-in vitrobiosynthesis system, a putative lantibiotic named suicin was produced with bactericidal activities against a variety of Gram-positive strains, including pathogenic streptococci and vancomycin-resistant enterococci. Ring topology dissection indicated that the 34-amino-acid lantibiotic contained two methyllanthionine residues and one disulfide bridge, which render suicin in an N-terminal linear and C-terminal globular shape. To confirm the function ofsuiK-suiR, SuiR was overexpressed and purified.In vitroanalysis showed that SuiR could specifically bind to thesuiAgene promoter. Its coexpression withsuiKcould activatesuiAgene promoter inLactococcus lactisNZ9000. Conclusively, we obtained a novel lantibiotic suicin by restoring its production from the remnantsuilocus and demonstrated that virulence-associated SuiK-SuiR regulates its production.


Sign in / Sign up

Export Citation Format

Share Document