scholarly journals Zebrafish (Danio rerio) as a Vertebrate Model Host To Study Colonization, Pathogenesis, and Transmission of FoodborneEscherichia coliO157

mSphere ◽  
2017 ◽  
Vol 2 (5) ◽  
Author(s):  
Daniel H. Stones ◽  
Alexander G. J. Fehr ◽  
Laurel Thompson ◽  
Jacqueline Rocha ◽  
Nicolas Perez-Soto ◽  
...  

ABSTRACTFoodborne infections with enterohemorrhagicEscherichia coli(EHEC) are a major cause of diarrheal illness in humans and can lead to severe complications such as hemolytic uremic syndrome. Cattle and other ruminants are the main reservoir of EHEC, which enters the food chain through contaminated meat, dairy, or vegetables. Here, we describe the establishment of a vertebrate model for foodborne EHEC infection, using larval zebrafish (Danio rerio) as a host and the protozoan preyParamecium caudatumas a vehicle. We follow pathogen release from the vehicle, intestinal colonization, microbe-host interactions, and microbial gene induction within a live vertebrate host, in real time, throughout the course of infection. We demonstrate that foodborne EHEC colonizes the gastrointestinal tract faster and establishes a higher burden than waterborne infection. Expression of the locus of enterocyte effacement (LEE), a key EHEC virulence factor, was observed early during infection, mainly at sites that experience fluid shear, and required tight control to enable successful host colonization. EHEC infection led to strain- and LEE-dependent mortality in the zebrafish host. Despite the presence of the endogenous microbiota limiting EHEC colonization levels, EHEC colonization and virulence can be studied either under gnotobiotic conditions or against the backdrop of an endogenous (and variable) host microbiota. Finally, we show that the model can be used for investigation of factors affecting shedding and transmission of bacteria to naive hosts. Overall, this constitutes a useful model, which ideally complements the strengths of existing EHEC vertebrate models.IMPORTANCEEnterohemorrhagicEscherichia coli(EHEC) is a foodborne pathogen which can cause diarrhea, vomiting, and, in some cases, severe complications such as kidney failure in humans. Up to 30% of cattle are colonized with EHEC, which can enter the food chain through contaminated meat, dairy, and vegetables. In order to control infections and stop transmission, it is important to understand what factors allow EHEC to colonize its hosts, cause virulence, and aid transmission. Since this cannot be systematically studied in humans, it is important to develop animal models of infection and transmission. We developed a model which allows us to study foodborne infection in zebrafish, a vertebrate host that is transparent and genetically tractable. Our results show that foodborne infection is more efficient than waterborne infection and that the locus of enterocyte effacement is a key virulence determinant in the zebrafish model. It is induced early during infection, and loss of tight LEE regulation leads to a decreased bacterial burden and decreased host mortality. Overall, the zebrafish model allows us to study foodborne infection, including pathogen release from the food vehicle and gene regulation and its context of host-microbe interactions, as well as environmental shedding and transmission to naive hosts.

Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3403
Author(s):  
Nurshafika Mohd Sakeh ◽  
Nurliyana Najwa Md Razip ◽  
Farah Idayu Mohd Ma’in ◽  
Mohammad Nazri Abdul Bahari ◽  
Naimah Latif ◽  
...  

Excessive production of melanin implicates hyperpigmentation disorders. Flavokawain A (FLA) and flavokawain B (FLB) have been reported with anti-melanogenic activity, but their melanogenic inhibition and toxicity effects on the vertebrate model of zebrafish are still unknown. In the present study, cytotoxic as well as melanogenic effects of FLA and FLB on cellular melanin content and tyrosinase activity were evaluated in α-MSH-induced B16/F10 cells. Master regulator of microphthalmia-associated transcription factor (Mitf) and the other downstream melanogenic-related genes were verified via quantitative real time PCR (qPCR). Toxicity assessment and melanogenesis inhibition on zebrafish model was further observed. FLA and FLB significantly reduced the specific cellular melanin content by 4.3-fold and 9.6-fold decrement, respectively in α-MSH-induced B16/F10 cells. Concomitantly, FLA significantly reduced the specific cellular tyrosinase activity by 7-fold whilst FLB by 9-fold. The decrement of melanin production and tyrosinase activity were correlated with the mRNA suppression of Mitf which in turn down-regulate Tyr, Trp-1 and Trp-2. FLA and FLB exhibited non-toxic effects on the zebrafish model at 25 and 6.25 µM, respectively. Further experiments on the zebrafish model demonstrated successful phenotype-based depigmenting activity of FLA and FLB under induced melanogenesis. To sum up, our findings provide an important first key step for both of the chalcone derivatives to be further studied and developed as potent depigmenting agents.


2020 ◽  
Vol 9 (45) ◽  
Author(s):  
Yujie Zhang ◽  
Yen-Te Liao ◽  
Vivian C. H. Wu

ABSTRACT Shiga toxin-producing Escherichia coli (STEC) serotype O103 is one of the primary pathogenic contaminants of beef products, contributing to several foodborne outbreaks in recent years. Here, we report the whole-genome sequence of a STEC O103:H2 strain isolated from cattle feces that contains a locus of enterocyte effacement (LEE) pathogenicity island.


mBio ◽  
2020 ◽  
Vol 11 (6) ◽  
Author(s):  
Yutao Liu ◽  
Runhua Han ◽  
Junyue Wang ◽  
Pan Yang ◽  
Fang Wang ◽  
...  

ABSTRACT The large intestinal pathogen enterohemorrhagic Escherichia coli (EHEC) O157:H7 detects host cues to regulate virulence gene expression during colonization and infection. However, virulence regulatory mechanisms of EHEC O157:H7 in the human large intestine are not fully understood. Herein, we identified a virulence-regulating pathway where the PhoQ/PhoP two-component regulatory system senses low magnesium levels and signals to the O island 119-encoded Z4267 (LmiA; low magnesium-induced regulator A), directly activating loci of enterocyte effacement genes to promote EHEC O157:H7 adherence in the large intestine. Disruption of this pathway significantly decreased EHEC O157:H7 adherence in the mouse intestinal tract. Moreover, feeding mice a magnesium-rich diet significantly reduced EHEC O157:H7 adherence in vivo. This LmiA-mediated virulence regulatory pathway is also conserved among several EHEC and enteropathogenic E. coli serotypes; therefore, our findings support the use of magnesium as a dietary supplement and provide greater insights into the dietary cues that can prevent enteric infections. IMPORTANCE Sensing specific gut metabolites is an important strategy for inducing crucial virulence programs by enterohemorrhagic Escherichia coli (EHEC) O157:H7 during colonization and infection. Here, we identified a virulence-regulating pathway wherein the PhoQ/PhoP two-component regulatory system signals to the O island 119-encoded low magnesium-induced regulator A (LmiA), which, in turn, activates locus of enterocyte effacement (LEE) genes to promote EHEC O157:H7 adherence in the low-magnesium conditions of the large intestine. This regulatory pathway is widely present in a range of EHEC and enteropathogenic E. coli (EPEC) serotypes. Disruption of this pathway significantly decreased EHEC O157:H7 adherence in the mouse intestinal tract. Moreover, mice fed a magnesium-rich diet showed significantly reduced EHEC O157:H7 adherence in vivo, indicating that magnesium may help in preventing EHEC and EPEC infection in humans.


2011 ◽  
Vol 79 (6) ◽  
pp. 2224-2233 ◽  
Author(s):  
Carla Calderon Toledo ◽  
Ida Arvidsson ◽  
Diana Karpman

ABSTRACTEnteropathogenicEscherichia coli(EPEC) and enterohemorrhagicE. coli(EHEC) are related attaching and effacing (A/E) pathogens. The genes responsible for the A/E pathology are carried on a chromosomal pathogenicity island termed the locus of enterocyte effacement (LEE). Both pathogens share a high degree of homology in the LEE and additional O islands. EHEC prevalence is much lower in areas where EPEC is endemic. This may be due to the development of antibodies against common EPEC and EHEC antigens. This study investigated the hypothesis that EPEC infections may protect against EHEC infections. We used a mouse model to inoculate BALB/c mice intragastrically, first with EPEC and then with EHEC (E. coliO157:H7). Four control groups received either a nonpathogenicE. coli(NPEC) strain followed by EHEC (NPEC/EHEC), phosphate-buffered saline (PBS) followed by EHEC (PBS/EHEC), EPEC/PBS, or PBS/PBS. Mice were monitored for weight loss and symptoms. EPEC colonized the intestine after challenge, and mice developed serum antibodies to intimin andE. colisecreted protein B (encoded in the LEE). Prechallenge with an EPEC strain had a protective effect after EHEC infection, as only a few mice developed mild symptoms, from which they recovered. These mice had an increase in body weight similar to that in control animals, and tissue morphology exhibited mild intestinal changes and normal renal histology. All mice that were not prechallenged with the EPEC strain developed mild to severe symptoms after EHEC infection, with weight loss as well as intestinal and renal histopathological changes. These data suggest that EPEC may protect against EHEC infection in this mouse model.


2015 ◽  
Vol 83 (4) ◽  
pp. 1286-1295 ◽  
Author(s):  
Charley C. Gruber ◽  
Vanessa Sperandio

EnterohemorrhagicEscherichia coli(EHEC) is a significant human pathogen and is the cause of bloody diarrhea and hemolytic-uremic syndrome. The virulence repertoire of EHEC includes the genes within the locus of enterocyte effacement (LEE) that are largely organized in five operons,LEE1toLEE5, which encode a type III secretion system, several effectors, chaperones, and regulatory proteins. In addition, EHEC also encodes several non-LEE-encoded effectors and fimbrial operons. The virulence genes of this pathogen are under a large amount of posttranscriptional regulation. The small RNAs (sRNAs) GlmY and GlmZ activate the translation of glucosamine synthase (GlmS) inE. coliK-12, and in EHEC they destabilize the 3′ fragments of theLEE4andLEE5operons and promote translation of the non-LEE-encoded effector EspFu. We investigated the global changes of EHEC gene expression governed by GlmY and GlmZ using RNA sequencing and gene arrays. This study extends the known effects of GlmY and GlmZ regulation to show that they promote expression of the curli adhesin, repress the expression of tryptophan metabolism genes, and promote the expression of acid resistance genes and the non-LEE-encoded effector NleA. In addition, seven novel EHEC-specific sRNAs were identified using RNA sequencing, and three of them—sRNA56, sRNA103, and sRNA350—were shown to regulate urease, fimbria, and the LEE, respectively. These findings expand the knowledge of posttranscriptional regulation in EHEC.


2016 ◽  
Vol 199 (1) ◽  
Author(s):  
Eduardo Soto ◽  
Norma Espinosa ◽  
Miguel Díaz-Guerrero ◽  
Meztlli O. Gaytán ◽  
José L. Puente ◽  
...  

ABSTRACT The type III secretion system (T3SS) is a supramolecular machine used by many bacterial pathogens to translocate effector proteins directly into the eukaryotic host cell cytoplasm. Enteropathogenic Escherichia coli (EPEC) is an important cause of infantile diarrheal disease in underdeveloped countries. EPEC virulence relies on a T3SS encoded within a chromosomal pathogenicity island known as the locus of enterocyte effacement (LEE). In this work, we pursued the functional characterization of the LEE-encoded protein EscK (previously known as Orf4). We provide evidence indicating that EscK is crucial for efficient T3S and belongs to the SctK (OrgA/YscK/MxiK) protein family, whose members have been implicated in the formation of a sorting platform for secretion of T3S substrates. Bacterial fractionation studies showed that EscK localizes to the inner membrane independently of the presence of any other T3SS component. Combining yeast two-hybrid screening and pulldown assays, we identified an interaction between EscK and the C-ring/sorting platform component EscQ. Site-directed mutagenesis of conserved residues revealed amino acids that are critical for EscK function and for its interaction with EscQ. In addition, we found that T3S substrate overproduction is capable of compensating for the absence of EscK. Overall, our data suggest that EscK is a structural component of the EPEC T3SS sorting platform, playing a central role in the recruitment of T3S substrates for boosting the efficiency of the protein translocation process. IMPORTANCE The type III secretion system (T3SS) is an essential virulence determinant for enteropathogenic Escherichia coli (EPEC) colonization of intestinal epithelial cells. Multiple EPEC effector proteins are injected via the T3SS into enterocyte cells, leading to diarrheal disease. The T3SS is encoded within a genomic pathogenicity island termed the locus of enterocyte effacement (LEE). Here we unravel the function of EscK, a previously uncharacterized LEE-encoded protein. We show that EscK is central for T3SS biogenesis and function. EscK forms a protein complex with EscQ, the main component of the cytoplasmic sorting platform, serving as a docking site for T3S substrates. Our results provide a comprehensive functional analysis of an understudied component of T3SSs.


2011 ◽  
Vol 80 (2) ◽  
pp. 688-703 ◽  
Author(s):  
Jacqueline Njoroge ◽  
Vanessa Sperandio

ABSTRACTThe human pathogen enterohemorrhagicEscherichia coli(EHEC) O157:H7 has two histidine sensor kinases, QseC and QseE, which respond to the mammalian adrenergic hormones epinephrine and norepinephrine by increasing their autophosphorylation. Although QseC and QseE are present in nonpathogenic strains ofE. coli, EHEC exploits these kinases for virulence regulation. To further investigate the full extent of epinephrine and its sensors' impact on EHEC virulence, we performed transcriptomic and phenotypic analyses of single and double deletions ofqseCandqseEgenes in the absence or presence of epinephrine. We showed that in EHEC, epinephrine sensing seems to occur primarily through QseC and QseE. We also observed that QseC and QseE regulate expression of the locus of enterocyte effacement (LEE) genes positively and negatively, respectively. LEE activation, which is required for the formation of the characteristic attaching and effacing (A/E) lesions by EHEC on epithelial cells, is epinephrine dependent. Regulation of the LEE and the non-LEE-contained virulence factor genenleAby QseE is indirect, through transcription inhibition of the RcsB response regulator. Finally, we show that coincubation of HeLa cells with epinephrine increases EHEC infectivity in a QseC- and QseE-dependent manner. These results genetically and phenotypically map the contributions of the two adrenergic sensors QseC and QseE to EHEC pathogenesis.


2013 ◽  
Vol 57 (9) ◽  
pp. 4260-4266 ◽  
Author(s):  
Chun Chen ◽  
Carla A. Blumentritt ◽  
Meredith M. Curtis ◽  
Vanessa Sperandio ◽  
Alfredo G. Torres ◽  
...  

ABSTRACTStreptomycin binds to the bacterial ribosome and disrupts protein synthesis by promoting misreading of mRNA. Restrictive mutations on the ribosomal subunit protein S12 confer a streptomycin resistance (Strr) phenotype and concomitantly increase the accuracy of the decoding process and decrease the rate of translation. Spontaneous Strrmutants ofEscherichia coliO157:H7 have been generated forin vivostudies to promote colonization and to provide a selective marker for this pathogen. The locus of enterocyte effacement (LEE) ofE. coliO157:H7 encodes a type III secretion system (T3SS), which is required for attaching and effacing to the intestinal epithelium. In this study, we observed decreases in both the expression and secretion levels of the T3SS translocated proteins EspA and EspB inE. coliO157:H7 Strrrestrictive mutants, which have K42T or K42I mutations in S12. However, mildly restrictive (K87R) and nonrestrictive (K42R) mutants showed slight or indistinguishable changes in EspA and EspB secretion. Adherence and actin staining assays indicated that restrictive mutations compromised the formation of attaching and effacing lesions inE. coliO157:H7. Therefore, we suggest thatE. coliO157:H7 strains selected for Strrshould be thoroughly characterized beforein vivoandin vitroexperiments that assay for LEE-directed phenotypes and that strains carrying nonrestrictive mutations such as K42R make better surrogates of wild-type strains than those carrying restrictive mutations.


2014 ◽  
Vol 80 (15) ◽  
pp. 4757-4763 ◽  
Author(s):  
Peter C. H. Feng ◽  
Sabine Delannoy ◽  
David W. Lacher ◽  
Luis Fernando dos Santos ◽  
Lothar Beutin ◽  
...  

ABSTRACTShiga toxin-producingEscherichia colistrains of serotype O113:H21 have caused severe human diseases, but they are unusual in that they do not produce adherence factors coded by the locus of enterocyte effacement. Here, a PCR microarray was used to characterize 65 O113:H21 strains isolated from the environment, food, and clinical infections from various countries. In comparison to the pathogenic strains that were implicated in hemolytic-uremic syndrome in Australia, there were no clear differences between the pathogens and the environmental strains with respect to the 41 genetic markers tested. Furthermore, all of the strains carried only Shiga toxin subtypes associated with human infections, suggesting that the environmental strains have the potential to cause disease. Most of the O113:H21 strains were closely related and belonged in the same clonal group (ST-223), but CRISPR analysis showed a great degree of genetic diversity among the O113:H21 strains.


2015 ◽  
Vol 83 (10) ◽  
pp. 4103-4117 ◽  
Author(s):  
Tracy H. Hazen ◽  
James B. Kaper ◽  
James P. Nataro ◽  
David A. Rasko

Attaching and effacingEscherichia coli(AEEC) strains are a genomically diverse group of diarrheagenicE. colistrains that are characterized by the presence of the locus of enterocyte effacement (LEE) genomic island, which encodes a type III secretion system that is essential to virulence. AEEC strains can be further classified as either enterohemorrhagicE. coli(EHEC), typical enteropathogenicE. coli(EPEC), or atypical EPEC, depending on the presence or absence of the Shiga toxin genes or bundle-forming pilus (BFP) genes. Recent AEEC genomic studies have focused on the diversity of the core genome, and less is known regarding the genetic diversity and relatedness of AEEC plasmids. Comparative genomic analyses in this study demonstrated genetic similarity among AEEC plasmid genes involved in plasmid replication conjugative transfer and maintenance, while the remainder of the plasmids had sequence variability. Investigation of the EPEC adherence factor (EAF) plasmids, which carry the BFP genes, demonstrated significant plasmid diversity even among isolates within the same phylogenomic lineage, suggesting that these EAF-like plasmids have undergone genetic modifications or have been lost and acquired multiple times. Global transcriptional analyses of the EPEC prototype isolate E2348/69 and two EAF plasmid mutants of this isolate demonstrated that the plasmid genes influence the expression of a number of chromosomal genes in addition to the LEE. This suggests that the genetic diversity of the EAF plasmids could contribute to differences in the global virulence regulons of EPEC isolates.


Sign in / Sign up

Export Citation Format

Share Document