scholarly journals Signatures of Selection at Drug Resistance Loci in Mycobacterium tuberculosis

mSystems ◽  
2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Tatum D. Mortimer ◽  
Alexandra M. Weber ◽  
Caitlin S. Pepperell

Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is a significant burden on global health. Antibiotic treatment imposes strong selective pressure on M. tuberculosis populations. Identifying the mutations that cause drug resistance in M. tuberculosis is important for guiding TB treatment and halting the spread of drug resistance. Whole-genome sequencing (WGS) of M. tuberculosis isolates can be used to identify novel mutations mediating drug resistance and to predict resistance patterns faster than traditional methods of drug susceptibility testing. We have used WGS from natural populations of drug-resistant M. tuberculosis to characterize effects of selection for advantageous mutations on patterns of diversity at genes involved in drug resistance. The methods developed here can be used to identify novel advantageous mutations, including new resistance loci, in M. tuberculosis and other clonal pathogens.

2008 ◽  
Vol 53 (2) ◽  
pp. 808-810 ◽  
Author(s):  
Agustina I. de la Iglesia ◽  
Emma J. Stella ◽  
Héctor R. Morbidoni

ABSTRACT Resistance to rifampin (rifampicin), isoniazid, and streptomycin of 69 Mycobacterium tuberculosis isolates was analyzed by an in-house method based on mycobacteriophage D29 and a colorimetric micromethod. Both methods showed sensitivity and specificity values ranging from 93% to 100%. These simple methods offer an option for drug resistance assessment of M. tuberculosis.


Antibiotics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 548 ◽  
Author(s):  
Jorge Cervantes ◽  
Noemí Yokobori ◽  
Bo-Young Hong

Clinical management of tuberculosis (TB) in endemic areas is often challenged by a lack of resources including laboratories for Mycobacterium tuberculosis (Mtb) culture. Traditional phenotypic drug susceptibility testing for Mtb is costly and time consuming, while PCR-based methods are limited to selected target loci. We herein utilized a portable, USB-powered, long-read sequencing instrument (MinION), to investigate Mtb genomic DNA from clinical isolates to determine the presence of anti-TB drug-resistance conferring mutations. Data analysis platform EPI2ME and antibiotic-resistance analysis using the real time ARMA workflow, identified Mtb species as well as extensive resistance gene profiles. The approach was highly sensitive, being able to detect almost all described drug resistance conferring mutations based on previous whole genome sequencing analysis. Our findings are supportive of the practical use of this system as a suitable method for the detection of antimicrobial resistance genes, and effective in providing Mtb genomic information. Future improvements in the error rate through statistical analysis, drug resistance prediction algorithms and reference databases would make this a platform suited for the clinical setting. The small size, relatively inexpensive cost of the device, as well as its rapid and simple library preparation protocol and analysis, make it an attractive option for settings with limited laboratory infrastructure.


2005 ◽  
Vol 49 (9) ◽  
pp. 3794-3802 ◽  
Author(s):  
Manzour Hernando Hazbón ◽  
Miriam Bobadilla del Valle ◽  
Marta Inírida Guerrero ◽  
Mandira Varma-Basil ◽  
Ingrid Filliol ◽  
...  

ABSTRACT Mutations at position 306 of embB (embB306) have been proposed as a marker for ethambutol resistance in Mycobacterium tuberculosis; however, recent reports of embB306 mutations in ethambutol-susceptible isolates caused us to question the biological role of this mutation. We tested 1,020 clinical M. tuberculosis isolates with different drug susceptibility patterns and of different geographical origins for associations between embB306 mutations, drug resistance patterns, and major genetic group. One hundred isolates (10%) contained a mutation in embB306; however, only 55 of these mutants were ethambutol resistant. Mutations in embB306 could not be uniquely associated with any particular type of drug resistance and were found in all three major genetic groups. A striking association was observed between these mutations and resistance to any drug (P < 0.001), and the association between embB306 mutations and resistance to increasing numbers of drugs was highly significant (P < 0.001 for trend). We examined the association between embB306 mutations and IS6110 clustering (as a proxy for transmission) among all drug-resistant isolates. Mutations in embB306 were significantly associated with clustering by univariate analysis (odds ratio, 2.44; P = 0.004). In a multivariate model that also included mutations in katG315, katG463, gyrA95, and kasA269, only mutations in embB306 (odds ratio, 2.14; P = 0.008) and katG315 (odds ratio, 1.99; P = 0.015) were found to be independently associated with clustering. In conclusion, embB306 mutations do not cause classical ethambutol resistance but may predispose M. tuberculosis isolates to the development of resistance to increasing numbers of antibiotics and may increase the ability of drug-resistant isolates to be transmitted between subjects.


2020 ◽  
Vol 9 (2) ◽  
pp. 465 ◽  
Author(s):  
Jalil Kardan-Yamchi ◽  
Hossein Kazemian ◽  
Simone Battaglia ◽  
Hamidreza Abtahi ◽  
Abbas Rahimi Foroushani ◽  
...  

Accurate and timely detection of drug resistance can minimize the risk of further resistance development and lead to effective treatment. The aim of this study was to determine the resistance to first/second-line anti-tuberculosis drugs in rifampicin/multidrug-resistant Mycobacterium tuberculosis (RR/MDR-MTB) isolates. Molecular epidemiology of strains was determined using whole genome sequencing (WGS)-based genotyping. A total of 35 RR/MDR-MTB isolates were subjected to drug susceptibility testing against first/second-line drugs using 7H9 Middlebrook in broth microdilution method. Illumina technology was used for paired-end WGS applying a Maxwell 16 Cell DNA Purification kit and the NextSeq platform. Data analysis and single nucleotide polymorphism calling were performed using MTBseq pipeline. The genome-based resistance to each drug among the resistant phenotypes was as follows: rifampicin (97.1%), isoniazid (96.6%), ethambutol (100%), levofloxacin (83.3%), moxifloxacin (83.3%), amikacin (100%), kanamycin (100%), capreomycin (100%), prothionamide (100%), D-cycloserine (11.1%), clofazimine (20%), bedaquiline (0.0%), and delamanid (44.4%). There was no linezolid-resistant phenotype, and a bedaquiline-resistant strain was wild type for related genes. The Beijing, Euro-American, and Delhi-CAS were the most populated lineage/sublineages. Drug resistance-associated mutations were mostly linked to minimum inhibitory concentration results. However, the role of well-known drug-resistant genes for D-cycloserine, clofazimine, bedaquiline, and delamanid was found to be more controversial.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Matthias Merker ◽  
Nkongho F. Egbe ◽  
Yannick R. Ngangue ◽  
Comfort Vuchas ◽  
Thomas A. Kohl ◽  
...  

Abstract Background Determining factors affecting the transmission of rifampicin (RR) and multidrug-resistant (MDR) Mycobacterium tuberculosis complex strains under standardized tuberculosis (TB) treatment is key to control TB and prevent the evolution of drug resistance. Methods We combined bacterial whole genome sequencing (WGS) and epidemiological investigations for 37% (n = 195) of all RR/MDR-TB patients in Cameroon (2012–2015) to identify factors associated with recent transmission. Results Patients infected with a strain resistant to high-dose isoniazid, and ethambutol had 7.4 (95% CI 2.6–21.4), and 2.4 (95% CI 1.2–4.8) times increased odds of being in a WGS-cluster, a surrogate for recent transmission. Furthermore, age between 30 and 50 was positively correlated with recent transmission (adjusted OR 3.8, 95% CI 1.3–11.4). We found high drug-resistance proportions against three drugs used in the short standardized MDR-TB regimen in Cameroon, i.e. high-dose isoniazid (77.4%), ethambutol (56.9%), and pyrazinamide (43.1%). Virtually all strains were susceptible to fluoroquinolones, kanamycin, and clofazimine, and treatment outcomes were mostly favourable (87.5%). Conclusion Pre-existing resistance to high-dose isoniazid, and ethambutol is associated with recent transmission of RR/MDR strains in our study. A possible contributing factor for this observation is the absence of universal drug susceptibility testing in Cameroon, likely resulting in prolonged exposure of new RR/MDR-TB patients to sub-optimal or failing first-line drug regimens.


2019 ◽  
Vol 9 (3-4) ◽  
pp. 531-538
Author(s):  
O. A. Pasechnik ◽  
A. A. Vyazovaya ◽  
M. A. Dymova ◽  
A. I. Blokh ◽  
V. L. Stasenko ◽  
...  

Mycobacterium tuberculosis strains of different phylogenetic lineages and genetic families differ in biological properties that determine, to some extent, epidemiological features and clinical manifestation in tuberculosis (TB) patients.The aim of the study was to assess the risk of an adverse outcome of the disease in TB patients caused by various M. tuberculosis genotypes.Materials and methods. A total of 425 patients with respiratory TB were enrolled in this study. They were registered at phthisiatric facilities in the Omsk region from March 2015 to June 2017 period and included: males — 73.1%, mean age 39.9 years, females — 26.9%, mean age 42.0 years. M. tuberculosis culture and drug susceptibility testing and DNA extraction were performed in accordance with standard methods. Strains were assigned to the M. tuberculosis Beijing genotype and its epidemiologically relevant clusters B0/W148 and 94-32 by PCR based detection of specific markers. Non-Beijing strains were subjected to spoligotyping.Results. We found that 66.5% isolates belonged to the Beijing genotype, 12.8% — to LAM, 10.1% — to T, and 4.7% — to the Ural genotype. Multi-drug resistance (MDR) to anti-TB drugs was observed in 195 M. tuberculosis strains (45.9%). Moreover, Beijing genotype was more often isolated from patients with MDR-TB infection (PR = 2.09 (95% CI 1.6–2.74) and TB infection associated with HIV infection (PR = 1.14 (95% CI 1.01–1.31). Lethal outcome was double higher in patients infected with Beijing vs. non-Beijing strains, 28.6% vs. 14.0% (PR = 2.03; 95% CI 1.3–3.17). The risk factors were identified as follows: young age 18–44 years (RR = 1.7; 95% CI 1.18–2.7), co-morbidity with HIV (RR = 5.0; 95% CI 3.39–7.45), multiple (RR = 1.7; 95% CI 1.14–2.55) and extensive drug resistance (RR = 2.57; 95% CI 1.35–4.92), and association with the Beijing genotype (RR = 2.0, 95% CI 1.3–3.17).Conclusion. M. tuberculosis spread in the Omsk region is characterised by significant prevalence of the Beijing genotype, associated with multiple and extensive drug resistance. A significant association of adverse clinical outcomes and various factors, including association with the Beijing genotype, requires development of new approaches in the fight against tuberculosis.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yustinus Maladan ◽  
Hana Krismawati ◽  
Tri Wahyuni ◽  
Ratna Tanjung ◽  
Kamla Awaludin ◽  
...  

Abstract Background Tuberculosis is one of the deadliest disease caused by Mycobacterium tuberculosis. Its treatment still becomes a burden for many countries including Indonesia. Drug resistance is one of the problems in TB treatment. However, a development in the molecular field through Whole-genome sequencing (WGS) can be used as a solution in detecting mutations associated with TB- drugs. This investigation intended to implement this data for supporting the scientific community in deeply understanding any TB epidemiology and evolution in Papua along with detecting any mutations in genes associated with TB-Drugs. Result A whole-genome sequencing was performed on the random samples from TB Referral Laboratory in Papua utilizing MiSeq 600 cycle Reagent Kit (V3). Furthermore, TBProfiler was used for genome analysis, RAST Server was employed for annotation, while Gview server was applied for BLAST genome mapping and a Microscope server was implemented for Regions of Genomic Plasticity (RGP). The largest genome of M. tuberculosis obtained was at the size of 4,396,040 bp with subsystems number at 309 and the number of coding sequences at 4326. One sample (TB751) contained one RGP. The drug resistance analysis revealed that several mutations associated with TB-drug resistance existed. In details, mutations of rpoB gene which were identified as S450L, D435Y, H445Y, L430P, and Q432K had caused the reduced effectiveness of rifampicin; while the mutases in katG (S315T), kasA (312S), inhA (I21V), and Rv1482c-fabG1 (C-15 T) genes had contributed to the resistance in isoniazid. In streptomycin, the resistance was triggered by the mutations in rpsL (K43R) and rrs (A514C, A514T) genes, and, in Amikacin, its resistance was led by mutations in rrs (A514C) gene. Additionally, in Ethambutol and Pyrazinamide, their reduced effectiveness was provoked by embB gene mutases (M306L, M306V, D1024N) and pncA (W119R). Conclusions The results from whole-genome sequencing of TB clinical sample in Papua, Indonesia could contribute to the surveillance of TB-drug resistance. In the drug resistance profile, there were 15 Multi Drugs Resistance (MDR) samples. However, Extensively Drug-resistant (XDR) samples have not been found, but samples were resistant to only Amikacin, a second-line drug.


2011 ◽  
Vol 55 (5) ◽  
pp. 2032-2041 ◽  
Author(s):  
Patricia J. Campbell ◽  
Glenn P. Morlock ◽  
R. David Sikes ◽  
Tracy L. Dalton ◽  
Beverly Metchock ◽  
...  

ABSTRACTThe emergence of multi- and extensively drug-resistant tuberculosis is a significant impediment to the control of this disease because treatment becomes more complex and costly. Reliable and timely drug susceptibility testing is critical to ensure that patients receive effective treatment and become noninfectious. Molecular methods can provide accurate and rapid drug susceptibility results. We used DNA sequencing to detect resistance to the first-line antituberculosis drugs isoniazid (INH), rifampin (RIF), pyrazinamide (PZA), and ethambutol (EMB) and the second-line drugs amikacin (AMK), capreomycin (CAP), kanamycin (KAN), ciprofloxacin (CIP), and ofloxacin (OFX). Nine loci were sequenced:rpoB(for resistance to RIF),katGandinhA(INH),pncA(PZA),embB(EMB),gyrA(CIP and OFX), andrrs,eis, andtlyA(KAN, AMK, and CAP). A total of 314 clinicalMycobacterium tuberculosiscomplex isolates representing a variety of antibiotic resistance patterns, genotypes, and geographical origins were analyzed. The molecular data were compared to the phenotypic data and the accuracy values were calculated. Sensitivity and specificity values for the first-line drug loci were 97.1% and 93.6% forrpoB, 85.4% and 100% forkatG, 16.5% and 100% forinhA, 90.6% and 100% forkatGandinhAtogether, 84.6% and 85.8% forpncA, and 78.6% and 93.1% forembB. The values for the second-line drugs were also calculated. The size and scope of this study, in numbers of loci and isolates examined, and the phenotypic diversity of those isolates support the use of DNA sequencing to detect drug resistance in theM. tuberculosiscomplex. Further, the results can be used to design diagnostic tests utilizing other mutation detection technologies.


2014 ◽  
Vol 58 (7) ◽  
pp. 3853-3859 ◽  
Author(s):  
Deus Lukoye ◽  
Fred A. Katabazi ◽  
Kenneth Musisi ◽  
David P. Kateete ◽  
Benon B. Asiimwe ◽  
...  

ABSTRACTSurveillance of the circulatingMycobacterium tuberculosiscomplex (MTC) strains in a given locality is important for understanding tuberculosis (TB) epidemiology. We performed molecular epidemiological studies on sputum smear-positive isolates that were collected for anti-TB drug resistance surveillance to establish the variability of MTC lineages with anti-TB drug resistance and HIV infection. Spoligotyping was performed to determine MTC phylogenetic lineages. We compared patients' MTC lineages with drug susceptibility testing (DST) patterns and HIV serostatus. Out of the 533 isolates, 497 (93.2%) had complete DST, PCR, and spoligotyping results while 484 (90.1%) participants had results for HIV testing. Overall, the frequency of any resistance was 75/497 (15.1%), highest among the LAM (34.4%; 95% confidence interval [CI], 18.5 to 53.2) and lowest among the T2 (11.5%; 95% CI, 7.6 to 16.3) family members. By multivariate analysis, LAM (adjusted odds ratio [ORadj], 5.0; 95% CI, 2.0 to 11.9;P< 0.001) and CAS (ORadj, 2.9; 95% CI, 1.4.0 to 6.3;P= 0.006) families were more likely to show any resistance than was T2. All other MTC lineages combined were more likely to be resistant to any of the anti-TB drugs than were the T2 strains (ORadj, 1.7; 95% CI, 1.0 to 2.9;P= 0.040). There were no significant associations between multidrug resistance and MTC lineages, but numbers of multidrug-resistant TB strains were small. No association was established between MTC lineages and HIV status. In conclusion, the T2 MTC lineage negatively correlates with anti-TB drug resistance, which might partly explain the reported low levels of anti-TB drug resistance in Kampala, Uganda. Patients' HIV status plays no role with respect to the MTC lineage distribution.


2007 ◽  
Vol 51 (12) ◽  
pp. 4515-4517 ◽  
Author(s):  
Ruiru Shi ◽  
Jianyuan Zhang ◽  
Koji Otomo ◽  
Guolong Zhang ◽  
Isamu Sugawara

ABSTRACT Seventy-four Mycobacterium tuberculosis clinical isolates from China were subjected to drug susceptibility testing using ethambutol, isoniazid, rifampin, and ofloxacin. The results revealed that the presence of embB mutations did not correlate with ethambutol resistance but was associated with multiple-drug resistance, especially resistance to both ethambutol and rifampin.


Sign in / Sign up

Export Citation Format

Share Document