scholarly journals Dietary Intervention Reverses Fatty Liver and Altered Gut Microbiota during Early-Life Undernutrition

mSystems ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
K. C. Bauer ◽  
K. E. Huus ◽  
E. M. Brown ◽  
T. Bozorgmehr ◽  
C. Petersen ◽  
...  

Nonalcoholic fatty liver disease (NAFLD) remains a global epidemic, but it is often studied in the context of obesity and aging. Nutritional deficits, however, also trigger hepatic steatosis, influencing health trajectories in undernourished pediatric populations. Here, we report that exposure to specific gut microbes impacts fatty liver pathology in mice fed a protein/fat-deficient diet. We utilize a multiomics approach to (i) characterize NAFLD in the context of early undernutrition and (ii) examine the impact of diet and gut microbes in the pathology and reversal of hepatic steatosis. We provide compelling evidence that an early-life, critical development window facilitates undernutrition-induced fatty liver pathology. Moreover, we demonstrate that sustained dietary intervention largely reverses fatty liver features and microbiome shifts observed during early-life malnutrition.

2016 ◽  
Vol 311 (4) ◽  
pp. G587-G598 ◽  
Author(s):  
Abdul Soofi ◽  
Katherine I. Wolf ◽  
Egon J. Ranghini ◽  
Mohammad A. Amin ◽  
Gregory R. Dressler

Nonalcoholic fatty liver disease (NAFLD) is a common cause of chronic liver disease and is increasing with the rising rate of obesity in the developed world. Signaling pathways known to influence the rate of lipid deposition in liver, known as hepatic steatosis, include the transforming growth factor (TGF) superfamily, which function through the SMAD second messengers. The kielin/chordin-like protein (KCP) is a large secreted protein that can enhance bone morphogenetic protein signaling while suppressing TGF-β signaling in cells and in genetically modified mice. In this report, we show that aging KCP mutant ( Kcp −/−) mice are increasingly susceptible to developing hepatic steatosis and liver fibrosis. When young mice are put on a high-fat diet, Kcp −/− mice are also more susceptible to developing liver pathology, compared with their wild-type littermates. Furthermore, mice that express a Pepck-KCP transgene ( Kcp Tg) in the liver are resistant to developing liver pathology even when fed a high-fat diet. Analyses of liver tissues reveal a significant reduction of P-Smad3, consistent with a role for KCP in suppressing TGF-β signaling. Transcriptome analyses show that livers from Kcp −/− mice fed a normal diet are more like wild-type livers from mice fed a high-fat diet. However, the KCP transgene can suppress many of the changes in liver gene expression that are due to a high-fat diet. These data demonstrate that shifting the TGF-β signaling paradigm with the secreted regulatory protein KCP can significantly alter the liver pathology in aging mice and in diet-induced NAFLD.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
So-Ryoung Lee ◽  
Kyung-Do Han ◽  
Eue-Keun Choi ◽  
Seil Oh ◽  
Gregory Y. H. Lip

AbstractWe evaluated the association between nonalcoholic fatty liver disease (NAFLD) and incident atrial fibrillation (AF) and analyzed the impact of NAFLD on AF risk in relation to body mass index (BMI). A total of 8,048,055 subjects without significant liver disease who were available fatty liver index (FLI) values were included. Subjects were categorized into 3 groups based on FLI: < 30, 30 to < 60, and ≥ 60. During a median 8-year of follow-up, 534,442 subjects were newly diagnosed as AF (8.27 per 1000 person-years). Higher FLI was associated with an increased risk of AF (hazard ratio [HR] 1.053, 95% confidence interval [CI] 1.046–1.060 in 30 ≤ FLI < 60, and HR 1.115, 95% CI 1.106–1.125 in FLI ≥ 60). In underweight subjects (BMI < 18.5 kg/m2), higher FLI raised the risk of AF (by 1.6-fold in 30 ≤ FLI < 60 and by twofold in FLI ≥ 60). In normal- and overweight subjects, higher FLI was associated with an increased risk of AF, but the HRs were attenuated. In obese subjects, higher FLI was not associated with higher risk of AF. NAFLD as assessed by FLI was independently associated with an increased risk of AF in nonobese subjects with BMI < 25 kg/m2. The impact of NAFLD on AF risk was accentuated in lean subjects with underweight.


2016 ◽  
Vol 75 (2) ◽  
pp. 162-168 ◽  
Author(s):  
Atul Singhal

Non-communicable diseases (NCD) and atherosclerotic CVD in particular, are the most important health problems of the 21st century. Already in every world region except Africa, NCD account for greater mortality than communicable, maternal, perinatal and nutritional conditions combined. Although modifiable lifestyle factors in adults are the main determinants, substantial evidence now suggests that factors in early life also have a major role in the development of NCD; commonly referred to as the Developmental Origins of Health and Disease hypothesis. Factors in utero, early postnatal life and throughout childhood, have been shown to affect NCD by influencing risk factors for CVD such as obesity, diabetes, hypertension and dyslipidaemia. Infant nutrition (e.g. breastfeeding rather than bottle feeding) and a slower pattern of infant weight gain have been shown to be particularly protective against later risk of obesity and CVD in both low- and high-income countries. The mechanisms involved are poorly understood, but include epigenetic changes; effects on endocrine systems regulating body weight, food intake and fat deposition; and changes in appetite regulation. As a consequence, strategies to optimise early life nutrition could make a major contribution to stemming the current global epidemic of NCD. This review will consider the role of early life factors in the development of NCD, focusing on the impact of infant nutrition/growth on obesity and CVD. The review will highlight the experimental (randomised) evidence where available, briefly summarise the underlying mechanisms involved and consider the implications for public health.


2014 ◽  
Vol 306 (6) ◽  
pp. G496-G504 ◽  
Author(s):  
Akihiro Asai ◽  
Pauline M. Chou ◽  
Heng-Fu Bu ◽  
Xiao Wang ◽  
M. Sambasiva Rao ◽  
...  

Liver steatosis in nonalcoholic fatty liver disease is affected by genetics and diet. It is associated with insulin resistance (IR) in hepatic and peripheral tissues. Here, we aimed to characterize the severity of diet-induced steatosis, obesity, and IR in two phylogenetically distant mouse strains, C57BL/6J and DBA/2J. To this end, mice (male, 8 wk old) were fed a high-fat and high-carbohydrate (HFHC) or control diet for 16 wk followed by the application of a combination of classic physiological, biochemical, and pathological studies to determine obesity and hepatic steatosis. Peripheral IR was characterized by measuring blood glucose level, serum insulin level, homeostasis model assessment of IR, glucose intolerance, insulin intolerance, and AKT phosphorylation in adipose tissues, whereas the level of hepatic IR was determined by measuring insulin-triggered hepatic AKT phosphorylation. We discovered that both C57BL/6J and DBA/2J mice developed obesity to a similar degree without the feature of liver inflammation after being fed an HFHC diet for 16 wk. C57BL/6J mice in the HFHC diet group exhibited severe pan-lobular steatosis, a marked increase in hepatic triglyceride levels, and profound peripheral IR. In contrast, DBA/2J mice in the HFHC diet group developed only a mild degree of pericentrilobular hepatic steatosis that was associated with moderate changes in peripheral IR. Interestingly, both C57BL/6J and DBA/2J developed severe hepatic IR after HFHC diet treatment. Collectively, these data suggest that the severity of diet-induced hepatic steatosis is correlated to the level of peripheral IR, not with the severity of obesity and hepatic IR. Peripheral rather than hepatic IR is a dominant factor of pathophysiology in nonalcoholic fatty liver disease.


Author(s):  
Elisabeth Miller ◽  
Julian Schmidberger ◽  
Wolfgang Kratzer

Abstract Background As part of a prospective clinical study, the degree of hepatic fatty degeneration was quantified in a patient population with nonalcoholic fatty liver disease and sonographically diagnosed with hepatic steatosis using attenuation imaging. Methods A total of 113 patients with hepatic steatosis were examined, of whom 35 showed focal fatty sparing. Patients with the condition after right nephrectomy, other known liver diseases, and relevant alcohol consumption were excluded from the evaluation. B-scan sonography and sonographic quantification of steatosis content using attenuation imaging (Aplio i800 Canon Medical Systems) were performed. Attenuation imaging is a new ultrasound-based measurement technique that allows objective detection and quantification of hepatic steatosis. Results The prevalence of focal fatty sparing was 31.0% in the patient population examined. Patients with focal fatty sparing showed a statistically significantly higher attenuation coefficient in contrast to patients without focal fatty sparing (0.79 ± 0.10 vs. 0.66 ± 0.09 dB/cm/MHz, p < 0.0001). Conclusion Detection of focal fatty sparing is associated with an increased attenuation coefficient and is thus an expression of higher-grade hepatic fatty degeneration. Patients with focal fatty sparing are more often male and have a higher BMI and a larger liver than patients with nonalcoholic fatty liver disease without focal fatty sparing.


2018 ◽  
Vol 40 (2) ◽  
pp. 417-446 ◽  
Author(s):  
Mathis Grossmann ◽  
Margaret E Wierman ◽  
Peter Angus ◽  
David J Handelsman

Abstract The liver and the reproductive system interact in a multifaceted bidirectional fashion. Sex steroid signaling influences hepatic endobiotic and xenobiotic metabolism and contributes to the pathogenesis of functional and structural disorders of the liver. In turn, liver function affects the reproductive axis via modulating sex steroid metabolism and transport to tissues via sex hormone–binding globulin (SHBG). The liver senses the body’s metabolic status and adapts its energy homeostasis in a sex-dependent fashion, a dimorphism signaled by the sex steroid milieu and possibly related to the metabolic costs of reproduction. Sex steroids impact the pathogenesis of nonalcoholic fatty liver disease, including development of hepatic steatosis, fibrosis, and carcinogenesis. Preclinical studies in male rodents demonstrate that androgens protect against hepatic steatosis and insulin resistance both via androgen receptor signaling and, following aromatization to estradiol, estrogen receptor signaling, through regulating genes involved in hepatic lipogenesis and glucose metabolism. In female rodents in contrast to males, androgens promote hepatic steatosis and dysglycemia, whereas estradiol is similarly protective against liver disease. In men, hepatic steatosis is associated with modest reductions in circulating testosterone, in part consequent to a reduction in circulating SHBG. Testosterone treatment has not been demonstrated to improve hepatic steatosis in randomized controlled clinical trials. Consistent with sex-dimorphic preclinical findings, androgens promote hepatic steatosis and dysglycemia in women, whereas endogenous estradiol appears protective in both men and women. In both sexes, androgens promote hepatic fibrosis and the development of hepatocellular carcinoma, whereas estradiol is protective.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Jiyun Park ◽  
Gyuri Kim ◽  
Hasung Kim ◽  
Jungkuk Lee ◽  
You-Bin Lee ◽  
...  

Abstract Background Nonalcoholic fatty liver disease (NAFLD) is a hepatic manifestation of metabolic disease and independently affects the development of cardiovascular (CV) disease. We investigated whether hepatic steatosis and/or fibrosis are associated with the development of incident heart failure (iHF), hospitalized HF (hHF), mortality, and CV death in both the general population and HF patients. Methods We analyzed 778,739 individuals without HF and 7445 patients with pre-existing HF aged 40 to 80 years who underwent a national health check-up from January 2009 to December 2012. The presence of hepatic steatosis and advanced hepatic fibrosis was determined using cutoff values for fatty liver index (FLI) and BARD score. We evaluated the association of FLI or BARD score with the development of iHF, hHF, mortality and CV death using multivariable-adjusted Cox regression models. Results A total of 28,524 (3.7%) individuals in the general population and 1422 (19.1%) pre-existing HF patients developed iHF and hHF respectively. In the multivariable-adjusted model, participants with an FLI ≥ 60 were at increased risk for iHF (hazard ratio [HR], 95% confidence interval [CI], 1.30, 1.24–1.36), hHF (HR 1.54, 95% CI 1.44–1.66), all-cause mortality (HR 1.62, 95% CI 1.54–1.70), and CV mortality (HR 1.41 95% CI 1.22–1.63) in the general population and hHF (HR 1.26, 95% CI 1.21–1.54) and all-cause mortality (HR 1.54 95% CI 1.24–1.92) in the HF patient group compared with an FLI < 20. Among participants with NAFLD, advanced liver fibrosis was associated with increased risk for iHF, hHF, and all-cause mortality in the general population and all-cause mortality and CV mortality in the HF patient group (all p < 0.05). Conclusion Hepatic steatosis and/or advanced fibrosis as assessed by FLI and BARD score was significantly associated with the risk of HF and mortality.


2021 ◽  
Vol 17 (4) ◽  
pp. 717-725
Author(s):  
Samarpita Mukherjee ◽  
Shubhrajit Saha ◽  
Ushasi Banerjee ◽  
Arup Kumar Banerjee ◽  
Ritam Banerjee

Background and Objectives In the last few decades,Nonalcoholic Fatty Liver Disease (NAFLD) has become a common health issue that leads to serious complications like cirrhosis, cardiovascular disease, etc. Insulin resistance (IR) is the key pathogenic factor for NAFLD. The young medicos being habituated in stressful and sedentary lifestyle and representative of the youth as well can fully justify their selection as study population and help to build social awareness by emphasizing the importance of early lifestyle modifications in preventing or delaying the severe complications of NAFLD. This study is aiming to find out if there is any correlation of hepatic steatosis with IR, Alanine Transaminases (ALT), Aspartate Transaminases (AST) or Gama Glutamyl Transferases (GGT) and also to identify if one enzyme is better correlating with hepatic steatosis than others in the scenario of Insulin Resistance among young medicos. METHODS: 132 medical students of North Bengal Medical College, aged between 18-25 years were included in this institution based observational cross-sectional study. Their Fasting Insulin, glucose, ALT, AST, GGT were measured, and IR was calculated by the Homeostatic Assessment of Insulin Resistance (HOMA-IR) calculator. Sonography was done to assess Hepatic steatosis. RESULTS: Among 132 subjects normal, grade 1 and grade 2 fatty changes have been found in 67.4%, 25%, and 7.6% of the study population respectively. The Grouping was done using the cut-off value of IR (i.e. subjects with IR<1.525 vs. IR≥1.525). Significant differences were found in the mean values of ALT, AST, GGT between groups. Significant positive concordances were found between enzymes ALT, GGT, and hepatic steatosis in subjects having IR ≥ 1.525.Regression analysis showed that higher GGT values have a stronger positive correlation with hepatic steatosis than ALT among the same. Interpretation and Conclusion From this study, we can interpret that subjects having higher GGT values are better associated with steatosis than those having higher ALT values and can lead us to the conclusion that GGT might be an important independent marker for NAFLD associated with IR. Furthermore, such observations may suggest considering GGT as a marker for assessing the severity of fatty liver irrespective of etiopathogenesis, though the population-based vivid evaluation is highly recommended.


Sign in / Sign up

Export Citation Format

Share Document