scholarly journals The Human Innate Immune Protein Calprotectin Elicits a Multimetal Starvation Response in Pseudomonas aeruginosa

Author(s):  
Cassandra E. Nelson ◽  
Weiliang Huang ◽  
Emily M. Zygiel ◽  
Elizabeth M. Nolan ◽  
Maureen A. Kane ◽  
...  

Transition metal nutrients are critical for growth and infection by all pathogens, and the innate immune system withholds these metals from pathogens to limit their growth in a strategy termed “nutritional immunity.” While multimetal depletion by the host is appreciated, the majority of studies have focused on individual metals. Here, we use the innate immune protein calprotectin (CP), which complexes with several metals, including iron (Fe), zinc (Zn), and manganese (Mn), and the opportunistic pathogen Pseudomonas aeruginosa to investigate multimetal starvation.

2013 ◽  
Vol 81 (6) ◽  
pp. 2043-2052 ◽  
Author(s):  
Yash R. Patankar ◽  
Rustin R. Lovewell ◽  
Matthew E. Poynter ◽  
Jeevan Jyot ◽  
Barbara I. Kazmierczak ◽  
...  

ABSTRACTWe previously demonstrated that bacterial flagellar motility is a fundamental mechanism by which host phagocytes bind and ingest bacteria. Correspondingly, loss of bacterial motility, consistently observed in clinical isolates from chronicPseudomonas aeruginosainfections, enables bacteria to evade association and ingestion ofP. aeruginosaby phagocytes bothin vitroandin vivo. Since bacterial interactions with the phagocyte cell surface are required for type three secretion system-dependent NLRC4 inflammasome activation byP. aeruginosa, we hypothesized that reduced bacterial association with phagocytes due to loss of bacterial motility, independent of flagellar expression, will lead to reduced inflammasome activation. Here we report that inflammasome activation is reduced in response to nonmotileP. aeruginosa. NonmotileP. aeruginosaelicits reduced IL-1β production as well as caspase-1 activation by peritoneal macrophages and bone marrow-derived dendritic cellsin vitro. Importantly, nonmotileP. aeruginosaalso elicits reduced IL-1β levelsin vivoin comparison to those elicited by wild-typeP. aeruginosa. This is the first demonstration that loss of bacterial motility results in reduced inflammasome activation and antibacterial IL-1β host response. These results provide a critical insight into how the innate immune system responds to bacterial motility and, correspondingly, how pathogens have evolved mechanisms to evade the innate immune system.


mBio ◽  
2013 ◽  
Vol 4 (6) ◽  
Author(s):  
Fiona M. Rudkin ◽  
Judith M. Bain ◽  
Catriona Walls ◽  
Leanne E. Lewis ◽  
Neil A. R. Gow ◽  
...  

ABSTRACT An important first line of defense against Candida albicans infections is the killing of fungal cells by professional phagocytes of the innate immune system, such as polymorphonuclear cells (PMNs) and macrophages. In this study, we employed live-cell video microscopy coupled with dynamic image analysis tools to provide insights into the complexity of C. albicans phagocytosis when macrophages and PMNs were incubated with C. albicans alone and when both phagocyte subsets were present. When C. albicans cells were incubated with only one phagocyte subtype, PMNs had a lower overall phagocytic capacity than macrophages, despite engulfing fungal cells at a higher rate once fungal cells were bound to the phagocyte surface. PMNs were more susceptible to C. albicans-mediated killing than macrophages, irrespective of the number of C. albicans cells ingested. In contrast, when both phagocyte subsets were studied in coculture, the two cell types phagocytosed and cleared C. albicans at equal rates and were equally susceptible to killing by the fungus. The increase in macrophage susceptibility to C. albicans-mediated killing was a consequence of macrophages taking up a higher proportion of hyphal cells under these conditions. In the presence of both PMNs and macrophages, C. albicans yeast cells were predominantly cleared by PMNs, which migrated at a greater speed toward fungal cells and engulfed bound cells more rapidly. These observations demonstrate that the phagocytosis of fungal pathogens depends on, and is modified by, the specific phagocyte subsets present at the site of infection. IMPORTANCE Extensive work investigating fungal cell phagocytosis by macrophages and PMNs of the innate immune system has been carried out. These studies have been informative but have examined this phenomenon only when one phagocyte subset is present. The current study employed live-cell video microscopy to break down C. albicans phagocytosis into its component parts and examine the effect of a single phagocyte subset, versus a mixed phagocyte population, on these individual stages. Through this approach, we identified that the rate of fungal cell engulfment and rate of phagocyte killing altered significantly when both macrophages and PMNs were incubated in coculture with C. albicans compared to the rate of either phagocyte subset incubated alone with the fungus. This research highlights the significance of studying pathogen-host cell interactions with a combination of phagocytes in order to gain a greater understanding of the interactions that occur between cells of the host immune system in response to fungal invasion.


mSphere ◽  
2017 ◽  
Vol 2 (6) ◽  
Author(s):  
George Sakoulas ◽  
Monika Kumaraswamy ◽  
Armin Kousha ◽  
Victor Nizet

ABSTRACT It is becoming increasingly understood that the current paradigms of in vitro antimicrobial susceptibility testing may have significant shortcomings in predicting activity in vivo. This study evaluated the activity of several antibiotics alone and in combination against clinical isolates of Salmonella enterica serotype Newport (meningitis case) utilizing both conventional and physiological media. In addition, the interactions of these antibiotics with components of the innate immune system were evaluated. Azithromycin, which has performed quite well clinically despite high MICs in conventional media, was shown to be more active in physiological media and to enhance innate immune system killing. Alternatively, chloramphenicol did not show enhanced immune system killing, paralleling its inferior clinical performance to other antibiotics that have been used to treat Salmonella meningitis. These findings are important additions to the building understanding of current in vitro antimicrobial assay limitations that hopefully will amount to future improvements in these assays to better predict clinical efficacy and activity in vivo. This study examines the pharmacodynamics of antimicrobials that are used to treat Salmonella with each other and with key components of the innate immune system. Antimicrobial synergy was assessed using time-kill and checkerboard assays. Antimicrobial interactions with innate immunity were studied by employing cathelicidin LL-37, whole-blood, and neutrophil killing assays. Ceftriaxone and ciprofloxacin were found to be synergistic in vitro against Salmonella enterica serotype Newport. Ceftriaxone, ciprofloxacin, and azithromycin each demonstrated synergy with the human cathelicidin defense peptide LL-37 in killing Salmonella. Exposure of Salmonella to sub-MICs of ceftriaxone resulted in enhanced susceptibility to LL-37, whole blood, and neutrophil killing. The activity of antibiotics in vivo against Salmonella may be underestimated in bacteriologic media lacking components of innate immunity. The pharmacodynamic interactions of antibiotics used to treat Salmonella with each other and with components of innate immunity warrant further study in light of recent findings showing in vivo selection of antimicrobial resistance by single agents in this pathogen. IMPORTANCE It is becoming increasingly understood that the current paradigms of in vitro antimicrobial susceptibility testing may have significant shortcomings in predicting activity in vivo. This study evaluated the activity of several antibiotics alone and in combination against clinical isolates of Salmonella enterica serotype Newport (meningitis case) utilizing both conventional and physiological media. In addition, the interactions of these antibiotics with components of the innate immune system were evaluated. Azithromycin, which has performed quite well clinically despite high MICs in conventional media, was shown to be more active in physiological media and to enhance innate immune system killing. Alternatively, chloramphenicol did not show enhanced immune system killing, paralleling its inferior clinical performance to other antibiotics that have been used to treat Salmonella meningitis. These findings are important additions to the building understanding of current in vitro antimicrobial assay limitations that hopefully will amount to future improvements in these assays to better predict clinical efficacy and activity in vivo.


2013 ◽  
Vol 82 (1) ◽  
pp. 405-412 ◽  
Author(s):  
Sasha J. Rose ◽  
Luiz E. Bermudez

ABSTRACTMycobacterium aviumsubsp.hominissuisis an opportunistic human pathogen that has been shown to form biofilmin vitroandin vivo. Biofilm formationin vivoappears to be associated with infections in the respiratory tract of the host. The reasoning behind howM. aviumsubsp.hominissuisbiofilm is allowed to establish and persist without being cleared by the innate immune system is currently unknown. To identify the mechanism responsible for this, we developed anin vitromodel using THP-1 human mononuclear phagocytes cocultured with establishedM. aviumsubsp.hominissuisbiofilm and surveyed various aspects of the interaction, including phagocyte stimulation and response, bacterial killing, and apoptosis.M. aviumsubsp.hominissuisbiofilm triggered robust tumor necrosis factor alpha (TNF-α) release from THP-1 cells as well as superoxide and nitric oxide production. Surprisingly, the hyperstimulated phagocytes did not effectively eliminate the cells of the biofilm, even when prestimulated with gamma interferon (IFN-γ) or TNF-α or cocultured with natural killer cells (which have been shown to induce anti-M. aviumsubsp.hominissuisactivity when added to THP-1 cells infected with planktonicM. aviumsubsp.hominissuis). Time-lapse microscopy and the TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) assay determined that contact with theM. aviumsubsp.hominissuisbiofilm led to early, widespread onset of apoptosis, which is not seen until much later in planktonicM. aviumsubsp.hominissuisinfection. Blocking TNF-α or TNF-R1 during interaction with the biofilm significantly reduced THP-1 apoptosis but did not lead to elimination ofM. aviumsubsp.hominissuis. Our data collectively indicate thatM. aviumsubsp.hominissuisbiofilm induces TNF-α-driven hyperstimulation and apoptosis of surveilling phagocytes, which prevents clearance of the biofilm by cells of the innate immune system and allows the biofilm-associated infection to persist.


2013 ◽  
Vol 81 (7) ◽  
pp. 2334-2346 ◽  
Author(s):  
Eric D. Holbrook ◽  
Katherine A. Smolnycki ◽  
Brian H. Youseff ◽  
Chad A. Rappleye

ABSTRACTHistoplasma capsulatumis a respiratory pathogen that infects phagocytic cells. The mechanisms allowingHistoplasmato overcome toxic reactive oxygen molecules produced by the innate immune system are an integral part ofHistoplasma's ability to survive during infection. To probe the contribution ofHistoplasmacatalases in oxidative stress defense, we created and analyzed the virulence defects of mutants lacking CatB and CatP, which are responsible for extracellular and intracellular catalase activities, respectively. Both CatB and CatP protectedHistoplasmafrom peroxide challengein vitroand from antimicrobial reactive oxygen produced by human neutrophils and activated macrophages. Optimal protection required both catalases, as the survival of a double mutant lacking both CatB and CatP was lower than that of single-catalase-deficient cells. Although CatB contributed to reactive oxygen species defensesin vitro, CatB was dispensable for lung infection and extrapulmonary disseminationin vivo. Loss of CatB from a strain also lacking superoxide dismutase (Sod3) did not further reduce the survival ofHistoplasmayeasts. Nevertheless, some catalase function was required for pathogenesis since simultaneous loss of both CatB and CatP attenuatedHistoplasmavirulencein vivo. These results demonstrate thatHistoplasma's dual catalases comprise a system that enablesHistoplasmato efficiently overcome the reactive oxygen produced by the innate immune system.


2010 ◽  
Vol 78 (11) ◽  
pp. 4744-4753 ◽  
Author(s):  
Tamding Wangdi ◽  
Lilia A. Mijares ◽  
Barbara I. Kazmierczak

ABSTRACT Microbe-associated molecular patterns are recognized by Toll-like receptors of the innate immune system. This recognition enables a rapid response to potential pathogens but does not clearly provide a way for the innate immune system to discriminate between virulent and avirulent microbes. We find that pulmonary infection of mice with type 3 translocation-competent Pseudomonas aeruginosa triggers a rapid inflammatory response, while infection with isogenic translocation-deficient mutants does not. Discrimination between translocon-positive and -negative bacteria requires caspase-1 activity in bone marrow-derived cells and interleukin-1 receptor signaling. Thus, the activation of caspase-1 by bacteria expressing type 3 secretion systems allows for rapid recognition of bacteria expressing conserved functions associated with virulence.


2014 ◽  
Vol 58 (9) ◽  
pp. 5594-5597 ◽  
Author(s):  
Brooke A. Napier ◽  
Victor Band ◽  
Eileen M. Burd ◽  
David S. Weiss

ABSTRACTHere, we describe the first identification of colistin-heteroresistantEnterobacter cloacaein the United States. Treatment of this isolate with colistin increased the frequency of the resistant subpopulation and induced cross-resistance to the host antimicrobial lysozyme. This is the first description of heteroresistance conferring cross-resistance to a host antimicrobial and suggests that clinical treatment with colistin may inadvertently select for bacteria that are resistant to components of the host innate immune system.


PLoS ONE ◽  
2017 ◽  
Vol 12 (7) ◽  
pp. e0181932 ◽  
Author(s):  
Gabriel Torrens ◽  
Marcelo Pérez-Gallego ◽  
Bartolomé Moya ◽  
Marta Munar-Bestard ◽  
Laura Zamorano ◽  
...  

2016 ◽  
Vol 85 (1) ◽  
Author(s):  
Sahar Hasim ◽  
David P. Allison ◽  
Scott T. Retterer ◽  
Alex Hopke ◽  
Robert T. Wheeler ◽  
...  

ABSTRACT Candida albicans is among the most common human fungal pathogens, causing a broad range of infections, including life-threatening systemic infections. The cell wall of C. albicans is the interface between the fungus and the innate immune system. The cell wall is composed of an outer layer enriched in mannosylated glycoproteins (mannan) and an inner layer enriched in β-(1,3)-glucan and chitin. Detection of C. albicans by Dectin-1, a C-type signaling lectin specific for β-(1,3)-glucan, is important for the innate immune system to recognize systemic fungal infections. Increased exposure of β-(1,3)-glucan to the immune system occurs when the mannan layer is altered or removed in a process called unmasking. Nanoscale changes to the cell wall during unmasking were explored in live cells with atomic force microscopy (AFM). Two mutants, the cho1Δ/Δ and kre5Δ/Δ mutants, were selected as representatives that exhibit modest and strong unmasking, respectively. Comparisons of the cho1Δ/Δ and kre5Δ/Δ mutants to the wild type reveal morphological changes in their cell walls that correlate with decreases in cell wall elasticity. In addition, AFM tips functionalized with Dectin-1 revealed that the forces of binding of Dectin-1 to all of the strains were similar, but the frequency of binding was highest for the kre5Δ/Δ mutant, decreased for the cho1Δ/Δ mutant, and rare for the wild type. These data show that nanoscale changes in surface topology are correlated with increased Dectin-1 adhesion and decreased cell wall elasticity. AFM, using tips functionalized with immunologically relevant molecules, can map epitopes of the cell wall and increase our understanding of pathogen recognition by the immune system.


Sign in / Sign up

Export Citation Format

Share Document