Evolution of organic-mineral interactions and implications for organic carbon occurrence and transformation in shale

2019 ◽  
Vol 132 (3-4) ◽  
pp. 784-792 ◽  
Author(s):  
Xiaojun Zhu ◽  
Jingong Cai ◽  
Yongshi Wang ◽  
Huimin Liu ◽  
Shoupeng Zhang

Abstract Organic-mineral interactions are pervasive in sedimentary environments; however, the extent of these interactions is not constant and has a significant impact on organic carbon (OC) occurrence and transformation. To understand the evolution of organic-mineral interactions and the implications for OC occurrence and transformation in fine-grained sediments, several shale samples were selected and subjected to physical and chemical sequential treatments. The samples were subjected to pyrolysis, Fourier transform infrared spectrophotometry (FTIR), and adsorption measurements to determine the organic parameters and the mineral surface area (MSA) of the shale samples. The results show that the organic fractions derived from sequential treatments have varying pyrolysis and FTIR characteristics. The correlation between the total OC content and MSA is positive, but it is split according to organic fractions with different attributes. Correlations between the different organic fractions and MSA indicate that the organic matter in shale is mainly adsorbed on mineral surfaces, while a certain portion of organic matter occurs in the pores and is adsorbed on the organic-mineral aggregates, suggesting variable interactions between the organic fractions with different attributes and minerals. From the pyrolysis and FTIR analysis, the organic fractions of different occurrence sites vary in their OC proportion, proclivity to form organic functional groups, and hydrocarbon generation potential. With increasing burial depth, the MSA and hydrogen index as well as OC loading per unit MSA are reduced, and the OC proportions of organic fractions with different attributes have regular trends. These observations indicate that the extent of organic-mineral interactions that can stabilize organic matter gradually decreases, resulting in transformation of the tightly mineral-combined OC into free OC. Our work reveals the heterogeneity in organic matter occurrence and the effect of the evolution of the organic-mineral interactions on OC occurrence and transformation, which is significant in the global carbon cycle and in petroleum systems.

2022 ◽  
pp. 1-42
Author(s):  
Xiaojun Zhu ◽  
Jingong Cai ◽  
Feng Liu ◽  
Qisheng Zhou ◽  
Yue Zhao ◽  
...  

In natural environments, organic-clay interactions are strong and cause organo-clay composites (a combination between organic matter [OM] and clay minerals) to be one of the predominant forms for OM occurrence, and their interactions greatly influence the hydrocarbon (HC) generation of OM within source rocks. However, despite occurring in nature, dominating the OM occurrence, and having unique HC generation ways, organo-clay composites have rarely been investigated as stand-alone petroleum precursors. To improve this understanding, we have compared the Rock-Eval pyrolysis parameters derived from more than 100 source rocks and their corresponding <2 μm clay-sized fractions (representing organo-clay composites). The results show that all of the Rock-Eval pyrolysis parameters in bulk rocks are closely positively correlated with those in their clay-sized fractions, but in clay-sized fractions the quality of OM for HC generation is poorer, in that the pyrolysable organic carbon levels and hydrogen index values are lower, whereas the residual organic carbon levels are higher than those in bulk rocks. Being integrated with the effects of organic-clay interactions on OM occurrence and HC generation, our results suggest that organo-clay composites are stand-alone petroleum precursors for HC generation occurring in source rocks, even if the source rocks exist in great varieties in their attributes. Our source material for HC generation comprehensively integrates the original OM occurrence and HC generation behavior in natural environments, which differs from kerogen and is much closer to the actual source material of HC generation in source rocks, and it calls for further focus on organic-mineral interactions in studies of petroleum systems.


2018 ◽  
Vol 36 (5) ◽  
pp. 1157-1171
Author(s):  
Agostinho Mussa ◽  
Deolinda Flores ◽  
Joana Ribeiro ◽  
Ana MP Mizusaki ◽  
Mónica Chamussa ◽  
...  

The Mozambique Basin, which occurs onshore and offshore in the central and southern parts of Mozambique, contains a thick sequence of volcanic and sedimentary rocks that range in age from the Jurassic to Cenozoic. This basin, along with the Rovuma basin to the north, has been the main target for hydrocarbon exploration; however, published data on hydrocarbon occurrences do not exist. In this context, the present study aims to contribute to the understanding of the nature of the organic matter of a sedimentary sequence intercepted by the Nemo-1X exploration well located in the offshore area of the Mozambique Basin. The well reached a depth of 4127 m, and 33 samples were collected from a depth of 2219–3676 m ranging in age from early to Late Cretaceous. In this study, petrographic and geochemical analytical methods were applied to assess the level of vitrinite reflectance and the organic matter type as well as the total organic carbon, total sulfur, and CaCO3 contents. The results show that the total organic carbon content ranges from 0.41 to 1.34 wt%, with the highest values determined in the samples from the Lower Domo Shale and Sena Formations, which may be related to the presence of the solid bitumens that occur in the carbonate fraction of those samples. The vitrinite random reflectances range from 0.65 to 0.86%Rrandom, suggesting that the organic matter in all of the samples is in the peak phase of the “oil generation window” (0.65–0.9%Rrandom). The organic matter is mainly composed of vitrinite and inertinite macerals, with a minor contribution of sporinite from the liptinite group, which is typical of kerogen type III. Although all of the samples have vitrinite reflectances corresponding to the oil window, the formation of liquid hydrocarbons is rather limited because the organic matter is dominated by gas-prone kerogen type III.


2019 ◽  
Vol 7 (4) ◽  
pp. 99 ◽  
Author(s):  
Shao-Ze Zhao ◽  
Yong Li ◽  
Hua-Jun Min ◽  
Tong Wang ◽  
Zhou Nie ◽  
...  

This study uses logging data, mineral component content, total organic carbon (TOC) content, and microscopic characteristics of the organic-rich shales in the Wufeng and Longmaxi Formations, as well as data reported by other researchers, to demonstrate that upwelling has played an important role in the organic matter enrichment. The results show that (1) the organic-rich shales of Well N211 in the Upper Yangtze region are located in the Wufeng Formation and the lower Longmaxi Formation, with a burial depth between 2308–2357 m. (2) The organic-rich shales are enriched in biogenic silica. (3) Based on paleogeographic location and characteristics of organisms, this study determines that upwelling occurred during the deposition of the organic-rich shales in the Wufeng and Longmaxi Formations, promoting the enrichment of organic matter in the shales. (4) The upwelling intensity gradually increased from the sedimentary period of the organic-rich shales in the mid-lower Wufeng Formation to the sedimentary period of the Guanyinqiao Member, and then decreased gradually from the sedimentary period of the Guanyinqiao Member to the sedimentary period of the organic-rich shales in the Longmaxi Formation, and leads to the different enrichment of organic matter in the vertical direction. The different developments of upwelling led to the coexistence of both high and low TOC contents in the Guanyinqiao Member along the vertical direction.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jian Fu ◽  
Xuesong Li ◽  
Yonghe Sun ◽  
Qiuli Huo ◽  
Ting Gao ◽  
...  

In the evaluation of source rocks, the total organic carbon (TOC) is an important indicator to evaluate the hydrocarbon generation potential of source rocks. At present, the commonly used methods for assessing TOC include △ log R and neural network method. However, practice shows that these methods have limitations in the application of unconventional intervals of sand-shale interbeds, and they cannot sufficiently reflect the variation of TOC in the vertical direction. Therefore, a total organic carbon (TOC) evaluation model suitable for shale and tight sandstone was established based on the effective medium symmetrical conduction theory. The model consists of four components: nonconductive matrix particles, clay minerals, organic components (solid organic matter and hydrocarbons), and pore water. The conductive phase in the model includes clay minerals and pore water, and other components are treated as nonconductive phases. When describing the conductivity of rock, each component in the model is completely symmetrical, and anisotropic characteristics of each component are considered. The model parameters are determined through the optimization method, and the bisection iteration method is used to solve the model equation. Compared with the classic TOC calculation method, the new model can evaluate the abundance of organic matter in shale and tight sandstone, which provides a new option to assess the TOC of rocks based on logging methods.


2013 ◽  
Vol 61 (2) ◽  
pp. 207-210 ◽  
Author(s):  
Mohammad Arifur Rahman ◽  
Md Jahangir Alam ◽  
Nur-E-Alam Siddique ◽  
AM Shafiqul Alam

Boreholes sediments (1-6 m depth) of the river Tista and Jamuna in Bangladesh were collected for the analysis of As, Fe, Mn, Cu and organic carbon. Chemical analysis reveals that Mn and Fe hydroxides and organic matter are the major leachable solids which carrying As. High levels of arsenic concentration in aquifers are associated with fine grained sediments at the lower depth of the sediment layer. The highest As containing sediment was gray and texture of sediment was clay type. The colour of the least As containing sediment was white and texture of sediment was sandy. In addition, this study indicate that As is closely associated with Fe and slightly correlated with Mn and Cu in the sediment of the river Tista and Jamuna. Arsenic was distributed regularly DOI: http://dx.doi.org/10.3329/dujs.v61i2.17072 Dhaka Univ. J. Sci. 61(2): 207-210, 2013 (July)


2017 ◽  
Vol 36 (5) ◽  
pp. 1295-1309 ◽  
Author(s):  
Wei Guo ◽  
Weijun Shen ◽  
Shangwen Zhou ◽  
Huaqing Xue ◽  
Dexun Liu ◽  
...  

Shales in the Well district of Yu 106 of the Shanxi Formation in the Eastern Ordos Basin is deposited in the swamp between delta plains, distributary river channels, natural levee, the far end of crevasse splay, and depression environments. According to organic geochemistry, reservoir physical property, gas bearing capacity, lithology experimental analysis, combined with the data of drilling, logging, testing and sedimentary facies, the reservoir conditions of shale gas and the distribution of an advantageous area in Shanxi Formation have been conducted. The results show that the total organic carbon content of the Shanxi Formation is relatively high, with an average content value of 5.28% in the segment 2 and 3.02% in segment 1, and the organic matter is mainly kerogen type II2 and III. The maturity of organic matter is high with 1.89% as the average value of Ro which indicates the superior condition for gas generation of this reservoir. The porosity of shales is 1.7% on average, and the average permeability is 0.0415 × 10−3 µm2. The cumulative thickness is relatively large, with an average of 75 m. Brittle mineral and clay content in shales are 49.9% and 50.1%, respectively, but the burial depth of shale is less than 3000 m. The testing gas content is relatively high (0.64 × 104 m3/d), which shows a great potential in commercial development. The total organic carbon of the segment 2 is higher than that of the segment 1, and it is also better than segment 1 in terms of gas content. Based on the thickness of shale and the distribution of sedimentary facies, it is predicted that the advantageous area of shale gas in the segment 2 is distributed in a striped zone along the northeast and the northsouth direction, which is controlled by the swamp microfacies between distributary river channels.


2019 ◽  
Vol 5 (3) ◽  
pp. 127-147
Author(s):  
Marjolaine Verret ◽  
Yifeng Wang ◽  
Jean Bjornson ◽  
Denis Lacelle

Hummocks develop by cryoturbation in fine-grained frost-susceptible soils and their stage of maturity may affect the translocation of organics in Cryosols. This study examines the distribution and morphology of hummocks in the Chuck Creek Trail Valley (northern British Columbia) and determines the quantity, distribution, and composition of organic matter in their soils. Hummocks occupy about 5%–20% of the valley and their morphology is largely affected by their silt content. Cryoturbated intrusions, radiocarbon dated to 2814 and 1648 cal year B.P., suggest that hummock development was initiated during the cooler late Holocene. Hummocks have an average soil organic carbon density of 16.3 kg m−2 in the uppermost 1 m, with 62% stored in the top 25 cm. Organics are mainly present as particulate organic matter in the O-horizon (25%–80%), characterized by degradable alkyl C and O/N-alkyl groups, but occur as mineral-associated organic matter (96%–98%) composed of recalcitrant aromatic and aliphatic C groups in the underlying B and C horizons. Minor differences in organic content and composition occur between hummock tops and troughs, and between hummocks showing different stages of maturity. In the absence of an observed frost table, contemporary hummock activity is attributed to seasonal freezing and thawing.


2020 ◽  
Author(s):  
Agnieszka Józefowska ◽  
Magdalena Ryżak ◽  
Justyna Sokołowska ◽  
Karolina Woźnica ◽  
Tomasz Zaleski ◽  
...  

&lt;p&gt;Keywords: soil texture, aggregate stability, organic additives, earthworms, microbial activity,&lt;/p&gt;&lt;p&gt;Lubbers et al. (2017) emphasised that earthworm by creating macroaggregates increase the amount of organic carbon in the soil. Such macroaggregates contain particulate organic matter, fungal hyphae, or roots, and afterwards, during the decomposition of macroaggregates, the organic matter becomes more resistant to microbial attack (Pulleman et al. 2005). Earthworms, through feeding and burrowing, are important elements in C cycling (Curry and Schmidt 2007). However, the type of introduced organic matter (Huang et al. 2018) and abiotic factors (Six et al. 2004) are equally important in creating stable organic-mineral components as well as the presence of earthworms.&lt;/p&gt;&lt;p&gt;A six-month experiment was carried out to test how the soil structure (the stability of soil aggregates) behave under the influence of various organic additives. For each soil, except the reference samples, one of the listed additives was introduced, i.e. straw, straw with fulvic acid, peat (garden soil), compost, compost with active bacteria cultures and straw with fulvic acids, humus and active bacteria cultures. The research was carried out on soils with four types of texture, i.e. sandy, loamy, silty and clayey soil. In the project, three different species of earthworms commonly occurred in Polish soils were a structure-forming factor (&lt;em&gt;Apporectodea rosea, Apporectodea calliginosa&lt;/em&gt; and&lt;em&gt; Dendrobena rubillus&lt;/em&gt;). After the experiment, the amount of organic carbon in the soil, dissolved organic carbon, humus forms and microbiological activity of the soil were evaluated. The stability of the soil aggregates was determined using two methods: the sieve method (Kemper and Rosenau 1986) and laser diffraction method (Bieganowski et al. 2018),&lt;/p&gt;&lt;p&gt;Based on this research it was noted that the aggregate stability is correlated mainly with soil texture. The applied additives had the most significant influence on the transformation of organic carbon in the soil. Soil organic carbon, which may be incorporated into the soil in the form of the organic-mineral colloids, is an essential element in the balance of the carbon in nature. Among the tested additives, organic carbon from compost, peat and compost with active bacteria cultures was in the highest amount associated with fine earth particles (about 36-48%). For comparison, only less than 8.5% of the organic carbon from the straw was incorporated into the mineral part of the soil.&lt;/p&gt;&lt;p&gt;Two methods to measures aggregate stability are not comparable for sandy soils. In the wet-sieving method the sand fraction higher than 0.25 mm pretend to be stable aggregates.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;The study was financed by The National Science Centre, Poland, grant No. 2017/01/X/ST10/00777, statistical analysis was made based the knowledge and skills &lt;span&gt;&lt;span&gt;achieved during the training: organized as part of the project: Integrated Program of the University of Agriculture in Krak&amp;#243;w, which is co-financed by the European Union (POWR.03.05.00-00-z222/17)&lt;/span&gt;&lt;/span&gt;&lt;/p&gt;


Clay Minerals ◽  
1986 ◽  
Vol 21 (4) ◽  
pp. 513-535 ◽  
Author(s):  
C. V. Jeans ◽  
M. J. Fisher

AbstractA tightly cemented series of marine sandstones, interbedded with shales and mudstones, occurs in the lower part of the Kimmeridge Clay Formation (Kimmeridgian to Ryazanian) of Arco Well 14/26-1 (Core No. 5, 8067–8085 ft). The well is on the northern flank of the Fraserburgh Spur Basement Ridge. The sediments are in the immature stage of hydrocarbon generation and are now at their maximum temperature and burial depth: the bottom hole temperature is 75°C. The sandstone diagenesis was complex, essentially of an intrinsic type, and took place under considerable overpressures. Initially a series of early cements was precipitated (minor chalcedony, quartz, feldspar, ferroan calcite, non-ferroan dolomite and major ferroan dolomite). A later phase of diagenesis embraced two periods of intrastratal solution (each affecting both the silicate and the carbonate components of the sediment) separated by a phase of calcite precipitation and followed by a phase of kaolinite cementation. The early cements are interpreted as being of the intrinsic miagenetic type. The later phase of diagenesis (alternating intrastratal solution and cement precipitation) resulted from the interaction of (i) the biotic breakdown of organic matter by thermophyllic micro-organisms and (ii) the abiotic thermal alteration of organic matter with the mineral components of the sediment: of particular importance were varying PCO2 and the generation of carboxylic and phenolic acids. The diagenetic pattern is closely comparable to that known from various Upper Jurassic sandy shelf sediments in other parts of the northern North Sea which have very different burial histories.


2019 ◽  
Vol 98 ◽  
pp. 06006
Author(s):  
Elena Gershelis ◽  
Ivan Goncharov ◽  
Oleg Dudarev ◽  
Alexey Ruban ◽  
Igor Semiletov

Here we present lithological and geochemical characteristics of the core drilled in coastal part of the Laptev Sea (Ivashkina Lagoon, Bykovsky Peninsula). It is shown that for sediments accumulated in specific lagoon conditions the increased content of organic carbon is confined to fine-grained lacustrine and lagoonal sediments in the uppermost layers. Pyrolytic analysis results indicate a sharp variability in the content of total organic carbon and volatile organic compounds across the studied horizons. The distribution of n-alkanes is characterized by the dominance of high molecular weight homologues, which indicates the ubiquitous contribution of higher terrestrial vegetation discharged with river and coastal thermo abrasion fluxes to the organic matter of bottom sediments.


Sign in / Sign up

Export Citation Format

Share Document