scholarly journals First structural observation around the hinge of the Mongolian Orocline (Central Asia): Implications for the geodynamics of oroclinal bending and the evolution of the Mongol-Okhotsk Ocean

Author(s):  
Pengfei Li ◽  
Min Sun ◽  
Tserendash Narantsetseg ◽  
Fred Jourdan ◽  
Wanwan Hu ◽  
...  

To understand the origin of curved subduction zones has been one of the major challenges in plate tectonics. The Mongol-Okhotsk Orogen in Central Asia is characterized by the development of a U-shaped oroclinal structure that was accompanied by the continuous subduction of the Mongol-Okhotsk oceanic plate. Therefore, it provides a natural laboratory to understand why and how a subduction system became tightly curved. In this study, we provide the first structural observation around the hinge of the Mongolian Orocline (the Zag zone in Central Mongolia), with an aim to constrain the oroclinal geometry and to link hinge zone structures with the origin of the orocline. Our results show that rocks in the Zag zone are characterized by the occurrence of a penetrative foliation that is commonly subparallel to bedding. Both bedding and dominant fabric in the Zag zone are steeply dipping, and their strike orientations in a map view follow a simple curve around the hinge of the Mongolian Orocline, thus providing the first structural constraint for 3D geometry of the orocline. A secondary penetrative fabric parallel to the axial plane of the orocline was not observed, indicating a low degree of orogen-parallel shortening during oroclinal bending. Combining with available geological and geophysical data, we conclude that the Mongolian Orocline was developed in a period of Permian to Jurassic, and its origin was linked to the subduction of the Mongol-Okhotsk oceanic slab. We consider that the low-strain oroclinal bending likely resulted from the along-strike variation in trench retreat, which was either triggered by the negative buoyancy of the Mongol-Okhotsk oceanic slab, or driven by the relative rotation of the Siberian and North China cratons. Our results shed a light on 3D geometry and geodynamic mechanisms of large-scale oroclinal bending in an accretionary orogen.

2021 ◽  
Author(s):  
Andrea Piccolo ◽  
Boris Kaus ◽  
Richard White ◽  
Nicolas Arndt ◽  
Nicolas Riel

<p>In the plate tectonic convection regime, the external lid is subdivided into discrete plates that move independently. Although it is known that the system of plates is mainly dominated by slab-pull forces, it is not yet clear how, when and why plate tectonics became the dominant geodynamic process in our planet. It could have started during the Meso-Archean (3.0-2.9 Ga). However, it is difficult to conceive a subduction driven system at the high mantle potential temperatures (<strong>Tp</strong>) that are thought to have existed around that time, because <strong>Tp</strong> controls the thickness and the strength of the compositional lithosphere making subduction unlikely. In recent years, however, a credible solution to the problem of subduction initiation during the Archean has been advanced, invoking a plume-induced subduction mechanism[1] that seems able to generate plate-tectonic like behaviour to first order. However, it has not yet been demonstrated how these tectonic processes interact with each other, and whether they are able to eventually propagate to larger scale subduction zones.</p><p>The Archean Eon was characterized by a high <strong>Tp</strong>[2]<strong>, </strong>which generates weaker plates, and a thick and chemically buoyant lithosphere. In these conditions, slab pull forces are inefficient, and most likely unable to be transmitted within the plate. Therefore, plume-related proto-plate tectonic cells may not have been able to interact with each other or showed a different interaction as a function of mantle potential temperature and composition of the lithosphere. Moreover, due to secular change of <strong>Tp, </strong>the dynamics may change with time. In order to understand the complex interaction between these tectonic seeds it is necessary to undertake large scale 3D numerical simulations, incorporating the most relevant phase transitions and able to handle complex constitutive rheological model.</p><p>Here, we investigate the effects of the composition and <strong>Tp </strong>independently to understand the potential implications of the interaction of plume-induced subduction initiation. We employ a finite difference visco-elasto-plastic thermal petrological code using a large-scale domain (10000 x 10000 x 1000 km along x, y and z directions) and incorporating the most relevant petrological phase transitions. We prescribed two oceanic plateaus bounded by subduction zones and we let the negative buoyancy and plume-push forces evolve spontaneously. The paramount question that we aim to answer is whether these configurations allow the generation of stable plate boundaries. The models will also investigate whether the presence of continental terrain helps to generate plate-like features and whether the processes are strong enough to generate new continental terrains <span>or assemble them </span></p><p>.</p><p> </p><p>[1]       T. V. Gerya, R. J. Stern, M. Baes, S. V. Sobolev, and S. A. Whattam, “Plate tectonics on the Earth triggered by plume-induced subduction initiation,” Nature, vol. 527, no. 7577, pp. 221–225, 2015.</p><p>[2]       C. T. Herzberg, K. C. Condie, and J. Korenaga, “Thermal history of the Earth and its petrological expression,” Earth Planet. Sci. Lett., vol. 292, no. 1–2, pp. 79–88, 2010.</p><p>[3]       R. M. Palin, M. Santosh, W. Cao, S.-S. Li, D. Hernández-Uribe, and A. Parsons, “Secular metamorphic change and the onset of plate tectonics,” Earth-Science Rev., p. 103172, 2020.</p>


2020 ◽  
Author(s):  
Marzieh Baes ◽  
Stephan Sobolev ◽  
Taras Gerya ◽  
Sascha Brune

<p>The formation of new subduction zones is a key component of global plate tectonics. Initiation of subduction following the impingement of a hot buoyant mantle plume is one of the few scenarios that allow breaking the lithosphere and recycling a stagnant lid without requiring any pre-existing weak zones. According to this scenario, upon arrival of a hot and buoyant mantle plume beneath the lithosphere, the lithosphere breaks apart and the hot mantle plume materials flow atop of the broken parts of the lithosphere. This leads to bending of the lithosphere and eventually initiation of subduction. Plume-lithosphere interaction can lead to subduction initiation provided that the plume causes a critical local weakening of the lithospheric material above it, which depends on the plume volume, its buoyancy, and the thickness of the lithosphere. Previous modeling studies showed that plume-lithosphere interaction can result in initiation of multi- or single-slab subduction zones around the newly formed plateau. However, they did not explore the parameters playing key roles in discriminating between the single- and multi-slab subduction scenarios. Here, we investigate factors controlling the number and shape of retreating subducting slabs formed by plume-lithosphere interaction. Using 3d thermo-mechanical models we show that the response of the lithosphere to arrival of a mantle plume beneath it depends on several parameters such as age of oceanic lithosphere, thickness of the crust, large-scale lithospheric extension rate, relative location of plume head and plateau edge and mantle temperature. The numerical experiments reveal that plume-lithosphere interaction in present day Earth can result in three different deformation regimes: (a) multi-slab subduction initiation, (b) single-slab subduction initiation and (c) plateau formation without subduction initiation. On early Earth (in Archean times) plume-lithosphere interaction could result in formation of either multi-slab subduction zones, very efficient in production of new crust, or episodic short-lived circular subduction. Extension eases subduction initiation caused by plume-lithosphere interaction. Plume-induced subduction initiation of old oceanic lithosphere with a plateau with thick crust is only possible if the lithosphere is subjected to extension.</p>


2021 ◽  
Author(s):  
Mathieu Soret ◽  
Guillaume Bonnet ◽  
Philippe Agard ◽  
Kyle Larson ◽  
John Cottle ◽  
...  

<p><strong>Subduction zones are crucial features of Earth’s plate tectonics, yet subduction initiation remains enigmatic and controversial. Herein, we reappraise the timing of formation of the first fragments detached from the leading edge of the downgoing slab during subduction initiation (i.e., the Semail metamorphic sole; Oman–United Arab Emirates). Based on geochronology and phase equilibrium modeling, we demonstrate that subduction initiated prior to 105 Ma and at a slow pace (< cm/yr). Subduction stagnated at relatively warm conditions (15–20°C/km) for at least 10 Myr before evolving into a faster (≥ 2–5 cm/yr) and colder (~7°C/km) self-sustained regime.  Subduction unlocking at 95-96 Ma, through the progressive change of the interplate thermo-mechanical structure, triggered the onset of slab retreat, large-scale corner flow and fast ocean spreading in the overriding plate. These results reconcile conflicting analogue and numerical subduction initiation models and reveal the thermal, mechanical and kinematic complexity of early subduction steps. </strong></p>


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Cédric P. Legendre ◽  
Li Zhao ◽  
Tai-Lin Tseng

AbstractThe average anisotropy beneath Anatolia is very strong and is well constrained by shear-wave splitting measurements. However, the vertical layering of anisotropy and the contribution of each layer to the overall pattern is still an open question. Here, we construct anisotropic phase-velocity maps of fundamental-mode Rayleigh waves for the Anatolia region using ambient noise seismology and records from several regional seismic stations. We find that the anisotropy patterns in the crust, lithosphere and asthenosphere beneath Anatolia have limited amplitudes and are generally consistent with regional tectonics and mantle processes dominated by the collision between Eurasia and Arabia and the Aegean/Anatolian subduction system. The anisotropy of these layers in the crust and upper mantle are, however, not consistent with the strong average anisotropy measured in this area. We therefore suggest that the main contribution to overall anisotropy likely originates from a deep and highly anisotropic region round the mantle transition zone.


Solid Earth ◽  
2012 ◽  
Vol 3 (2) ◽  
pp. 293-306 ◽  
Author(s):  
V. Magni ◽  
J. van Hunen ◽  
F. Funiciello ◽  
C. Faccenna

Abstract. Continental collision is an intrinsic feature of plate tectonics. The closure of an oceanic basin leads to the onset of subduction of buoyant continental material, which slows down and eventually stops the subduction process. In natural cases, evidence of advancing margins has been recognized in continental collision zones such as India-Eurasia and Arabia-Eurasia. We perform a parametric study of the geometrical and rheological influence on subduction dynamics during the subduction of continental lithosphere. In our 2-D numerical models of a free subduction system with temperature and stress-dependent rheology, the trench and the overriding plate move self-consistently as a function of the dynamics of the system (i.e. no external forces are imposed). This setup enables to study how continental subduction influences the trench migration. We found that in all models the slab starts to advance once the continent enters the subduction zone and continues to migrate until few million years after the ultimate slab detachment. Our results support the idea that the advancing mode is favoured and, in part, provided by the intrinsic force balance of continental collision. We suggest that the advance is first induced by the locking of the subduction zone and the subsequent steepening of the slab, and next by the sinking of the deepest oceanic part of the slab, during stretching and break-off of the slab. These processes are responsible for the migration of the subduction zone by triggering small-scale convection cells in the mantle that, in turn, drag the plates. The amount of advance ranges from 40 to 220 km and depends on the dip angle of the slab before the onset of collision.


2021 ◽  
Author(s):  
Sara Aniko Wirp ◽  
Alice-Agnes Gabriel ◽  
Elizabeth H. Madden ◽  
Maximilian Schmeller ◽  
Iris van Zelst ◽  
...  

<p>Earthquake rupture dynamic models capture the variability of slip in space and time while accounting for the structural complexity which is characteristic for subduction zones. The use of a geodynamic subduction and seismic cycling (SC) model to initialize dynamic rupture (DR) ensures that initial conditions are self-consistent and reflect long-term behavior. We extend the 2D geodynamical subduction and SC model of van Zelst et al. (2019) and use it as input for realistic 3-dimensional DR megathrust earthquake models. We follow the subduction to tsunami run-up linking approach described in Madden et al. (2020), including a complex subduction setup along with their resulting tsunamis. The distinct variation of shear traction and friction coefficients with depth lead to realistic average rupture speeds and dynamic stress drop as well as efficient tsunami generation. </p><p>We here analyze a total of 14 subduction-initialized 3D dynamic rupture-tsunami scenarios. By varying the hypocentral location along arc and depth, we generate 12 distinct unilateral and bilateral earthquakes with depth-variable slip distribution and directivity, bimaterial, and geometrical effects in the dynamic slip evolutions. While depth variations of the hypocenters barely influence the tsunami behavior, lateral varying nucleation locations lead to a shift in the on-fault slip which causes time delays of the wave arrival at the coast. The fault geometry of our DR model that arises during the SC model is non-planar and includes large-scale roughness. These features (topographic highs) trigger supershear rupture propagation in up-dip or down-dip direction, depending on the hypocentral depth.</p><p>In two additional scenarios, we analyze variations in the energy budget of the DR scenarios. In the SC model, an incompressible medium is assumed (ν=0.5) which is valid only for small changes in pressure and temperature. Unlike in the DR model where the material is compressible and a different Poisson’s ratio (ν=0.25) has to be assigned. Poisson’s ratios between 0.1 and 0.4 stand for various compressible materials. To achieve a lower shear strength of all material on and off the megathrust fault and to facilitate slip, we increase the Poisson ratio in the DR model to ν=0.3 which is consistent with basaltic rocks. As a result, larger fault slip is concentrated at shallower depths and generates higher vertical seafloor displacement and earthquake moment magnitude respectively. Even though the tsunami amplitudes are much higher, the same dynamic behavior as in the twelve hypocenter-variable models can be observed. Lastly, we increase fracture energy by changing the critical slip distance in the linear slip-weakening frictional parameterization. This generates a tsunami earthquake (Kanamori, 1972) characterized by low rupture velocity (on average half the amount of s-wave speed) and low peak slip rate, but at the same time large shallow fault slip and moment magnitude. The shallow fault slip of this event causes the highest vertical seafloor uplift compared to all other simulations. This leads to the highest tsunami amplitude and inundation area while the wavefront hits the coast delayed compared to the other scenarios.</p>


2021 ◽  
Author(s):  
Daniel Müller ◽  
Andrey Dara ◽  
Christopher Krause ◽  
Mayra Daniela Peña-Guerrero ◽  
Tillman Schmitz ◽  
...  

<p>Water withdrawals for irrigated crop production constitute the largest global consumer of blue water resources. Monitoring the dynamics of irrigated crop cultivation allows to track changes in water consumption of irrigated cropping, which is particularly paramount in water-scarce arid and semi-arid areas. We analyzed changes in irrigated crop cultivation along with occurrence of hydrological droughts for the Amu Darya river basin of Central Asia (534,700 km<sup>2</sup>), once the largest tributary river to the Aral Sea before large-scale irrigation projects have grossly reduced the amount of water that reaches the river delta. We used annual and seasonal spectral-temporal metrics derived from Landsat time series to quantify the three predominant cropping practices in the region (first season, second season, double cropping) for every year between 1988 and 2020. We further derived unbiased area estimates for the cropping classes at the province level based on a stratified random sample (n=2,779). Our results reveal a small yet steady decrease in irrigated second season cultivation across the basin. Regionally, we observed a gradual move away from cotton monocropping in response to the policy changes that were instigated since the mid-1990s. We compared the observed cropping dynamics to the occurrence of hydrological droughts, i.e., periods with inadequate water resources for irrigation. We find that areas with higher drought risks rely more on irrigation of the second season crops. Overall, our analysis provides the first fine-scale, annual crop type maps for the irrigated areas in the Amu Darya basin. The results shed light on how institutional changes and hydroclimatic factors that affect land-use decision-making, and thus the dynamics of crop type composition, in the vast irrigated areas of Central Asia.</p>


Sign in / Sign up

Export Citation Format

Share Document