Bast Fibers: New Opportunities for Green Nanotechnology

2021 ◽  
Vol 91 (9) ◽  
pp. 1816-1825
Author(s):  
N. S. Dymnikova ◽  
E. V. Erokhina ◽  
A. P. Moryganov
2021 ◽  
Vol 11 (10) ◽  
pp. 4513
Author(s):  
Roberto Martins ◽  
Olga Barbara Kaczerewska

Nanotechnology is a key enabling technology bringing together chemists, biologists, physicists, and materials science engineers, among others [...]


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4723
Author(s):  
Sara Dalle Vacche ◽  
Vijayaletchumy Karunakaran ◽  
Alessia Patrucco ◽  
Marina Zoccola ◽  
Loreleï Douard ◽  
...  

Nanocellulose was extracted from short bast fibers, from hemp (Cannabis sativa L.) plants harvested at seed maturity, non-retted, and mechanically decorticated in a defibering apparatus, giving non-aligned fibers. A chemical pretreatment with NaOH and HCl allowed the removal of most of the non-cellulosic components of the fibers. No bleaching was performed. The chemically pretreated fibers were then refined in a beater and treated with a cellulase enzyme, followed by mechanical defibrillation in an ultrafine friction grinder. The fibers were characterized by microscopy, infrared spectroscopy, thermogravimetric analysis and X-ray diffraction after each step of the process to understand the evolution of their morphology and composition. The obtained nanocellulose suspension was composed of short nanofibrils with widths of 5–12 nm, stacks of nanofibrils with widths of 20–200 nm, and some larger fibers. The crystallinity index was found to increase from 74% for the raw fibers to 80% for the nanocellulose. The nanocellulose retained a yellowish color, indicating the presence of some residual lignin. The properties of the nanopaper prepared with the hemp nanocellulose were similar to those of nanopapers prepared with wood pulp-derived rod-like nanofibrils.


2021 ◽  
Vol 5 (4) ◽  
pp. 100
Author(s):  
Anjum Saleem ◽  
Luisa Medina ◽  
Mikael Skrifvars

New technologies in the automotive industry require lightweight, environment-friendly, and mechanically strong materials. Bast fibers such as kenaf, flax, and hemp reinforced polymers are frequently used composites in semi-structural applications in industry. However, the low mechanical properties of bast fibers limit the applications of these composites in structural applications. The work presented here aims to enhance the mechanical property profile of bast fiber reinforced acrylic-based polyester resin composites by hybridization with basalt fibers. The hybridization was studied in three resin forms, solution, dispersion, and a mixture of solution and dispersion resin forms. The composites were prepared by established processing methods such as carding, resin impregnation, and compression molding. The composites were characterized for their mechanical (tensile, flexural, and Charpy impact strength), thermal, and morphological properties. The mechanical performance of hybrid bast/basalt fiber composites was significantly improved compared to their respective bast fiber composites. For hybrid composites, the specific flexural modulus and strength were on an average about 21 and 19% higher, specific tensile modulus and strength about 31 and 16% higher, respectively, and the specific impact energy was 13% higher than bast fiber reinforced composites. The statistical significance of the results was analyzed using one-way analysis of variance.


RSC Advances ◽  
2021 ◽  
Vol 11 (27) ◽  
pp. 16661-16674
Author(s):  
Yu-Yu Chen ◽  
Wen-Ping Jiang ◽  
Huan-Luen Chen ◽  
Hui-Chi Huang ◽  
Guan-Jhong Huang ◽  
...  

Green nanotechnology of six types of carbon nanodots (CNDs), and their sourcing from abundant natural plants, herbs, and agriculture waste, provides a cost-effective method, with low cytotoxicity and stable fluorescence, for biolabeling and for developing cell nanocarriers.


2022 ◽  
Vol 4 (1) ◽  
pp. 013-018
Author(s):  
Mohini Chandrashekhar Upadhye ◽  
Mohini Chetan Kuchekar ◽  
Rohini Revansiddhappa Pujari ◽  
Nutan Uttam Sable

Biopolymers are compounds prepared by using various living organisms, including plants. These are composed of repeated units of the same or similar structure (monomers) linked together. Rubber, starch, cellulose, proteins and DNA, RNA, chitin, and peptides are some of the examples of natural biopolymers. Biopolymers are a diverse and remarkably versatile class of materials that are either produced by biological systems or synthesize from biological sources. Biopolymers are used in pharmaceutical industry and also in food industry.Naturally derived polymers are also used for conditioning benefits in hair and skin care. Biopolymers have various applications in medicine, food, packaging, and petroleum industries. This review article is focused on various aspects of biopolymers with a special emphasis on role of biopolymers in green nanotechnology and agriculture.


Sign in / Sign up

Export Citation Format

Share Document