Renal Tissue Damage Induced by Acute Kidney Injury in Sepsis Rat Model Is Inhibited by Cynaropicrin via IL-1β and TNF-α Down-Regulation

2021 ◽  
Vol 497 (1) ◽  
pp. 151-157
Author(s):  
Danlei Cai ◽  
Hongdan Duan ◽  
Yangshan Fu ◽  
Zhongfeng Cheng
2018 ◽  
Vol 9 (12) ◽  
pp. 6632-6642 ◽  
Author(s):  
Samir A. Salama ◽  
Hany H. Arab ◽  
Ibrahim A. Maghrabi

Troxerutin enhances renal tissue regeneration, improves renal function, and decreases renal tissue injury in gentamycin-treated rats.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Zi-Gang Zhao ◽  
Hong-Xia Zhu ◽  
Li-Min Zhang ◽  
Yu-Ping Zhang ◽  
Chun-Yu Niu

This study aimed to investigate the effect of mesenteric lymph drainage on the acute kidney injury induced by hemorrhagic shock without resuscitation. Eighteen male Wistar rats were randomly divided into sham, shock, and drainage groups. The hemorrhagic shock model (40 mmHg, 3 h) was established in shock and drainage groups; mesenteric lymph drainage was performed from 1 h to 3 h of hypotension in the drainage group. The results showed that renal tissue damage occurred; the levels of urea, creatinine, and trypsin in the plasma as well as intercellular adhesion molecule-1 (ICAM-1), receptor of advanced glycation end-products (RAGE), tumor necrosis factor-α(TNF-α), malondialdehyde (MDA), lactic acid (LA), and 2,3-DPG in the renal tissue were increased in the shock group after 3 h of hypotension. Mesenteric lymph drainage lessened the following: renal tissue damage; urea and trypsin concentrations in the plasma; ICAM-1, RAGE, TNF-α, MDA, and LA levels in the renal tissue. By contrast, mesenteric lymph drainage increased the 2,3-DPG level in the renal tissue. These findings indicated that mesenteric lymph drainage could relieve kidney injury caused by sustained hypotension, and its mechanisms involve the decrease in trypsin activity, suppression of inflammation, alleviation of free radical injury, and improvement of energy metabolism.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Yue Zhang ◽  
Hongdong Huang ◽  
Wenhu Liu ◽  
Sha Liu ◽  
Xue Yan Wang ◽  
...  

AbstractThe role of microRNA-21-5p (miR-21-5p) in sepsis-induced acute kidney injury (AKI) has been seldom discussed. Therefore, the objective of this present study was to investigate the mechanism of endothelial progenitor cells-derived exosomes (EPCs-exos) in sepsis-induced AKI via miR-21-5p/runt-related transcription factor 1 (RUNX1) axis. miR-21-5p was downregulated and RUNX1 was upregulated in the kidney of cecal ligation and puncture (CLP) rats, and miR-21-5p targeted RUNX1. Elevation of miR-21-5p improved renal function and renal tissue pathological damage, attenuated serum inflammatory response, as well as reduced apoptosis and oxidative stress response in renal tissues, and regulated endothelial glycocalyx damage marker proteins syndecan-1 and heparanase-1 in CLP rats. Overexpression of RUNX1 abolished the impacts of elevated miR-21-5p in CLP rats. Also, EPCs-exos upregulated miR-21-5p expression, and functioned similar to elevation of miR-21-5p for CLP rats. Downregulating miR-21-5p partially reversed the effects of EPCs-exos on sepsis-induced AKI. Collectively, our study suggests that EPCs release miR-21-5p-containing exosomes to alleviate sepsis-induced AKI through RUNX1 silencing.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yinwu Bao ◽  
Mengqiu Bai ◽  
Huanhuan Zhu ◽  
Yuan Yuan ◽  
Ying Wang ◽  
...  

AbstractDemethylase Tet2 plays a vital role in the immune response. Acute kidney injury (AKI) initiation and maintenance phases are marked by inflammatory responses and leukocyte recruitment in endothelial and tubular cell injury processes. However, the role of Tet2 in AKI is poorly defined. Our study determined the degree of renal tissue damage associated with Tet2 gene expression levels in a cisplatin-induced AKI mice model. Tet2-knockout (KO) mice with cisplatin treatment experienced severe tubular necrosis and dilatation, inflammation, and AKI markers’ expression levels than the wild-type mice. In addition, the administration of Tet2 plasmid protected Tet2-KO mice from cisplatin-induced nephrotoxicity, but not Tet2-catalytic-dead mutant. Tet2 KO was associated with a change in metabolic pathways like retinol, arachidonic acid, linolenic acid metabolism, and PPAR signaling pathway in the cisplatin-induced mice model. Tet2 expression is also downregulated in other AKI mice models and clinical samples. Thus, our results indicate that Tet2 has a renal protective effect during AKI by regulating metabolic and inflammatory responses through the PPAR signaling pathway.


Critical Care ◽  
2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Nuttha Lumlertgul ◽  
Anna Hall ◽  
Luigi Camporota ◽  
Siobhan Crichton ◽  
Marlies Ostermann

Abstract Background The EMiC2 membrane is a medium cut-off haemofilter (45 kiloDalton). Little is known regarding its efficacy in eliminating medium-sized cytokines in sepsis. This study aimed to explore the effects of continuous veno-venous haemodialysis (CVVHD) using the EMiC2 filter on cytokine clearance. Methods This was a prospective observational study conducted in critically ill patients with sepsis and acute kidney injury requiring kidney replacement therapy. We measured concentrations of 12 cytokines [Interleukin (IL) IL-1β, IL-1α, IL-2, IL-4, IL-6, IL-8, IL-10, interferon (IFN)-γ, tumour necrosis factor (TNF)-α, vascular endothelial growth factor, monocyte chemoattractant protein (MCP)-1, epidermal growth factor (EGF)] in plasma at baseline (T0) and pre- and post-dialyzer at 1, 6, 24, and 48 h after CVVHD initiation and in the effluent fluid at corresponding time points. Outcomes were the effluent and adsorptive clearance rates, mass balances, and changes in serial serum concentrations. Results Twelve patients were included in the final analysis. All cytokines except EGF concentrations declined over 48 h (p < 0.001). The effluent clearance rates were variable and ranged from negligible values for IL-2, IFN-γ, IL-1α, IL-1β, and EGF, to 19.0 ml/min for TNF-α. Negative or minimal adsorption was observed. The effluent and adsorptive clearance rates remained steady over time. The percentage of cytokine removal was low for most cytokines throughout the 48-h period. Conclusion EMiC2-CVVHD achieved modest removal of most cytokines and demonstrated small to no adsorptive capacity despite a decline in plasma cytokine concentrations. This suggests that changes in plasma cytokine concentrations may not be solely influenced by extracorporeal removal. Trial registration: NCT03231748, registered on 27th July 2017.


2017 ◽  
Vol 43 (4) ◽  
pp. 1673-1688 ◽  
Author(s):  
Ou Li ◽  
Xiaodong Geng ◽  
Qian Ma ◽  
Weiwei Wang ◽  
Ran Liu ◽  
...  

Background/Aims: Rhabdomyolysis, one of the leading causes of acute kidney injury (AKI), develops after trauma, drug toxicity, infections, burns, and physical exertion. The aim of this study was to investigate differences in gene and protein expression to elucidate the pathogenesis of rhabdomyolysis (RM)-induced AKI. Methods: In this study, we used glycerol induced renal injury as a model of RM-induced AKI. Affymetrix U133 plus 2.0 microarrays were used to perform gene microarray analysis. Isobaric tagging with related and absolute quantitation (iTRAQ) labeling mass spectrometry (MS) was applied to screen and identify differentially expressed proteins between RM-induced AKI and normal murine renal tissue. Verification experiments included immunohistochemistry (IHC), real-time PCR, Western blotting, and the measurement of ATP and ROS production. HK-2 cells were incubated in vitro with ferrous myoglobin and pcDNA-TTR, followed by assays to detect cell proliferation, ROS and apoptosis. Results: According to gene microarray and iTRAQ-MS analysis, we screened 17 common elements. After multiple analyses, we selected transthyretin (TTR) as our focus and investigated TTR in the kidney. Verification experiments with IHC confirmed differential expression levels of TTR proteins. Furthermore, Western blotting showed a stepwise decrease in TTR in AKI renal tissues. Cell-based experiments showed that overexpression of TTR could improve HK-2 cell viability and inhibit apoptosis. TTR reduced apoptosis by decreasing the accumulation of reactive oxygen species (ROS). Conclusion: This study reports a possible mechanism for RM-induced AKI and suggests that reductions in TTR could increase the generation of ROS and induce apoptosis. TTR may be a potentially valuable target for RM-induced AKI.


2012 ◽  
Vol 303 (10) ◽  
pp. F1443-F1453 ◽  
Author(s):  
Chung-Hsi Hsing ◽  
Chiou-Feng Lin ◽  
Edmund So ◽  
Ding-Ping Sun ◽  
Tai-Chi Chen ◽  
...  

Bone morphogenetic protein (BMP)-7 protects sepsis-induced acute kidney injury (AKI). Dexmedetomidine (DEX), an α2-adrenoceptor (α2-AR) agonist, has anti-inflammatory effects. We investigated the protective effects of DEX on sepsis-induced AKI and the expression of BMP-7 and histone deacetylases (HDACs). In vitro , the effects of DEX or trichostatin A (TSA, an HDAC inhibitor) on TNF-α, monocyte chemotactic protein (MCP-1), BMP-7, and HDAC mRNA expression in LPS-stimulated rat renal tubular epithelial NRK52E cells, was determined using real-time PCR. In vivo, mice were intraperitoneally injected with DEX (25 μg/kg) or saline immediately and 12 h after cecal ligation and puncture (CLP) surgery. Twenty-four hours after CLP, we examined kidney injury and renal TNF-α, MCP-1, BMP-7, and HDAC expression. Survival was monitored for 120 h. LPS increased HDAC2, HDAC5, TNF-α, and MCP-1 expression, but decreased BMP-7 expression in NRK52E cells. DEX treatment decreased the HDAC2, HDAC5, TNF-α, and MCP-1 expression, but increased BMP-7 and acetyl histone H3 expression, whose effects were blocked by yohimbine, an α2-AR antagonist. With DEX treatment, the LPS-induced TNF-α expression and cell death were attenuated in scRNAi-NRK52E but not BMP-7 RNAi-NRK52E cells. In CLP mice, DEX treatment increased survival and attenuated AKI. The expression of HDAC2, HDAC5, TNF-α, and MCP-1 mRNA in the kidneys of CLP mice was increased, but BMP-7 was decreased. However, DEX treatment reduced those changes. DEX reduces sepsis-induced AKI by decreasing TNF-α and MCP-1 and increasing BMP-7, which is associated with decreasing HDAC2 and HDAC5, as well as increasing acetyl histone H3.


2021 ◽  
Vol 546 ◽  
pp. 103-110
Author(s):  
Masayoshi Saito ◽  
Satoshi Horie ◽  
Hidenori Yasuhara ◽  
Akane Kashimura ◽  
Eiji Sugiyama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document