Adult stem cells may not be able to differentiate into other cell types

BMJ ◽  
2002 ◽  
Vol 324 (7339) ◽  
pp. 696-696
Author(s):  
S. Mayor
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Deepa Bhartiya

AbstractLife-long tissue homeostasis of adult tissues is supposedly maintained by the resident stem cells. These stem cells are quiescent in nature and rarely divide to self-renew and give rise to tissue-specific “progenitors” (lineage-restricted and tissue-committed) which divide rapidly and differentiate into tissue-specific cell types. However, it has proved difficult to isolate these quiescent stem cells as a physical entity. Recent single-cell RNAseq studies on several adult tissues including ovary, prostate, and cardiac tissues have not been able to detect stem cells. Thus, it has been postulated that adult cells dedifferentiate to stem-like state to ensure regeneration and can be defined as cells capable to replace lost cells through mitosis. This idea challenges basic paradigm of development biology regarding plasticity that a cell enters point of no return once it initiates differentiation. The underlying reason for this dilemma is that we are putting stem cells and somatic cells together while processing for various studies. Stem cells and adult mature cell types are distinct entities; stem cells are quiescent, small in size, and with minimal organelles whereas the mature cells are metabolically active and have multiple organelles lying in abundant cytoplasm. As a result, they do not pellet down together when centrifuged at 100–350g. At this speed, mature cells get collected but stem cells remain buoyant and can be pelleted by centrifuging at 1000g. Thus, inability to detect stem cells in recently published single-cell RNAseq studies is because the stem cells were unknowingly discarded while processing and were never subjected to RNAseq. This needs to be kept in mind before proposing to redefine adult stem cells.


2011 ◽  
Vol 2011 ◽  
pp. 1-18 ◽  
Author(s):  
Chad M. Teven ◽  
Xing Liu ◽  
Ning Hu ◽  
Ni Tang ◽  
Stephanie H. Kim ◽  
...  

Stem cells are characterized by their capability to self-renew and terminally differentiate into multiple cell types. Somatic or adult stem cells have a finite self-renewal capacity and are lineage-restricted. The use of adult stem cells for therapeutic purposes has been a topic of recent interest given the ethical considerations associated with embryonic stem (ES) cells. Mesenchymal stem cells (MSCs) are adult stem cells that can differentiate into osteogenic, adipogenic, chondrogenic, or myogenic lineages. Owing to their ease of isolation and unique characteristics, MSCs have been widely regarded as potential candidates for tissue engineering and repair. While various signaling molecules important to MSC differentiation have been identified, our complete understanding of this process is lacking. Recent investigations focused on the role of epigenetic regulation in lineage-specific differentiation of MSCs have shown that unique patterns of DNA methylation and histone modifications play an important role in the induction of MSC differentiation toward specific lineages. Nevertheless, MSC epigenetic profiles reflect a more restricted differentiation potential as compared to ES cells. Here we review the effect of epigenetic modifications on MSC multipotency and differentiation, with a focus on osteogenic and adipogenic differentiation. We also highlight clinical applications of MSC epigenetics and nuclear reprogramming.


2021 ◽  
Vol 26 ◽  
pp. 169-191
Author(s):  
Emma E. Redfield ◽  
Erin K. Luciano ◽  
Monica J. Sewell ◽  
Lucas A. Mitzel ◽  
Isaac J. Sanford ◽  
...  

This study looks at the number of clinical trials involving specific stem cell types. To our knowledge, this has never been done before. Stem cell clinical trials that were conducted at locations in the US and registered on the National Institutes of Health database at ‘clinicaltrials.gov’ were categorized according to the type of stem cell used (adult, cancer, embryonic, perinatal, or induced pluripotent) and the year that the trial was registered. From 1999 to 2014, there were 2,357 US stem cell clinical trials registered on ‘clinicaltrials.gov,’ and 89 percent were from adult stem cells and only 0.12 percent were from embryonic stem cells. This study concludes that embryonic stem cells should no longer be used for clinical study because of their irrelevance, moral questions, and induced pluripotent stem cells.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Hakan Orbay ◽  
Morikuni Tobita ◽  
Hiroshi Mizuno

Mesenchymal stem cells (MSCs) are adult stem cells that were initially isolated from bone marrow. However, subsequent research has shown that other adult tissues also contain MSCs. MSCs originate from mesenchyme, which is embryonic tissue derived from the mesoderm. These cells actively proliferate, giving rise to new cells in some tissues, but remain quiescent in others. MSCs are capable of differentiating into multiple cell types including adipocytes, chondrocytes, osteocytes, and cardiomyocytes. Isolation and induction of these cells could provide a new therapeutic tool for replacing damaged or lost adult tissues. However, the biological properties and use of stem cells in a clinical setting must be well established before significant clinical benefits are obtained. This paper summarizes data on the biological properties of MSCs and discusses current and potential clinical applications.


2008 ◽  
Vol 24 (3-4) ◽  
pp. E18 ◽  
Author(s):  
Matthew T. Harting ◽  
James E. Baumgartner ◽  
Laura L. Worth ◽  
Linda Ewing-Cobbs ◽  
Adrian P. Gee ◽  
...  

Preliminary discoveries of the efficacy of cell therapy are currently being translated to clinical trials. Whereas a significant amount of work has been focused on cell therapy applications for a wide array of diseases, including cardiac disease, bone disease, hepatic disease, and cancer, there continues to be extraordinary anticipation that stem cells will advance the current therapeutic regimen for acute neurological disease. Traumatic brain injury is a devastating event for which current therapies are limited. In this report the authors discuss the current status of using adult stem cells to treat traumatic brain injury, including the basic cell types and potential mechanisms of action, preclinical data, and the initiation of clinical trials.


2009 ◽  
Vol 58 (4) ◽  
pp. 301-308 ◽  
Author(s):  
Cristina A. Szigyarto ◽  
Paul Sibbons ◽  
Gill Williams ◽  
Mathias Uhlen ◽  
Su M. Metcalfe

Axotrophin/MARCH-7 was first identified in mouse embryonic stem cells as a neural stem cell gene. Using the axotrophin/MARCH-7 null mouse, we discovered profound effects on T lymphocyte responses, including 8-fold hyperproliferation and 5-fold excess release of the stem cell cytokine leukemia inhibitory factor (LIF). Our further discovery that axotrophin/MARCH-7 is required for targeted degradation of the LIF receptor subunit gp190 implies a direct role in the regulation of LIF signaling. Bioinformatics studies revealed a highly conserved RING-CH domain in common with the MARCH family of E3-ubiquitin ligases, and accordingly, axotrophin was renamed “MARCH-7.” To probe protein expression of human axotrophin/MARCH-7, we prepared antibodies against different domains of the protein. Each antibody bound its specific target epitope with high affinity, and immunohistochemistry cross-validated target specificity. Forty-eight human tissue types were screened. Epithelial cells stained strongly, with trophoblasts having the greatest staining. In certain tissues, specific cell types were selectively positive, including neurons and neuronal progenitor cells in the hippocampus and cerebellum, endothelial sinusoids of the spleen, megakaryocytes in the bone marrow, crypt stem cells of the small intestine, and alveolar macrophages in the lung. Approximately 20% of central nervous system neuropils were positive. Notably, axotrophin/MARCH-7 has an expression profile that is distinct from that of other MARCH family members. This manuscript contains online supplemental material at http://www.jhc.org . Please visit this article online to view these materials.


2002 ◽  
Vol 2 ◽  
pp. 983-995 ◽  
Author(s):  
Kevin D. Bunting ◽  
Robert G. Hawley

Hematopoietic stem cells (HSCs) are the best studied of the tissue-specific stem cells. By definition, HSCs have long been regarded as restricted to formation of blood cells of both the lymphoid and myeloid lineages. HSCs residing in the bone marrow microenvironment have self-renewal capacity and can repopulate the hematopoietic system of irradiated transplant recipients for the lifetime of the individual. Therefore, HSCs are extremely important targets for gene therapy applications aimed toward the treatment of inherited and acquired blood disorders. However, recent studies have suggested that a subpopulation of HSCs may have the ability to contribute to diverse cell types such as hepatocytes, myocytes, and neuronal cells, especially following induced tissue damage. Preclinical amelioration of liver disease and myocardial infarcts by HSC-enriched bone marrow cell populations raises the possibility that HSC transplants have the potential to provide therapeutic benefit for a wide variety of diseases. These surprising findings contradict the dogma that adult stem cells are developmentally restricted. Extrapolation of these findings to the clinic will be facilitated by prospective identification of the stem cells that possess this developmental plasticity. Furthermore, characterization of the signaling pathways and molecular determinants regulating the remarkable transdifferentiation capacity of these stem cells may provide insight into novel approaches for modulating frequency of differentiative potential.


Blood ◽  
2012 ◽  
Vol 120 (11) ◽  
pp. 2174-2181 ◽  
Author(s):  
Hideo Ema ◽  
Toshio Suda

Abstract The niche microenvironment controls stem cell number, fate, and behavior. The bone marrow, intestine, and skin are organs with highly regenerative potential, and all produce a large number of mature cells daily. Here, focusing on adult stem cells in these organs, we compare the structures and cellular components of their niches and the factors they produce. We then define the niche as a functional unit for stem cell regulation. For example, the niche possibly maintains quiescence and regulates fate in stem cells. Moreover, we discuss our hypothesis that many stem cell types are regulated by both specialized and nonspecialized niches, although hematopoietic stem cells, as an exception, are regulated by a nonspecialized niche only. The specialized niche is composed of 1 or a few types of cells lying on the basement membrane in the epithelium. The nonspecialized niche is composed of various types of cells widely distributed in mesenchymal tissues. We propose that the specialized niche plays a role in local regulation of stem cells, whereas the nonspecialized niche plays a role in relatively broad regional or systemic regulation. Further work will verify this dual-niche model to understand mechanisms underlying stem cell regulation.


2019 ◽  
pp. S131-S138 ◽  
Author(s):  
A. SAMAKOVA ◽  
A. GAZOVA ◽  
N. SABOVA ◽  
S. VALASKOVA ◽  
M. JURIKOVA ◽  
...  

Ischemic diseases are characterized by reduced blood supply to a tissue or an organ due to obstruction of blood vessels. The most serious and most common ischemic diseases include ischemic heart disease, ischemic stroke, and critical limb ischemia. Revascularization is the first choice of therapy, but the cell therapy is being introduced as a possible way of treatment for no-option patients. One of the possibilities of cell therapy is the use of mesenchymal stem cells (MSCs). MSCs are easily isolated from bone marrow and can be defined as non-hematopoietic multipotent adult stem cells population with a defined capacity for self-renewal and differentiation into cell types of all three germ layers depending on their origin. Since 1974, when Friedenstein and coworkers (Friedenstein et al. 1974) first time isolated and characterized MSCs, MSC-based therapy has been shown to be safe and effective. Nevertheless, many scientists and clinical researchers want to improve the success of MSCs in regenerative therapy. The secret of successful cell therapy may lie, along with the homing, in secretion of biologically active molecules including cytokines, growth factors, and chemokines known as MSCs secretome. One of the intracellular signalling mechanism includes the activity of phosphatidylinositol-3-kinase (phosphoinositide 3-kinase) (PI3K) - protein kinase B (serine-threonine protein kinase Akt) (Akt) pathway. This PI3K/Akt pathway plays key roles in many cell types in regulating cell proliferation, differentiation, apoptosis, and migration. Pre-conditioning of MSCs could improve efficacy of signalling mechanism.


2007 ◽  
Vol 404 (2) ◽  
pp. 169-178 ◽  
Author(s):  
Zoë D. Burke ◽  
Shifaan Thowfeequ ◽  
Macarena Peran ◽  
David Tosh

Stem cells are undifferentiated cells that can self-renew and generate specialized (functional) cell types. The remarkable ability of stem cells to differentiate towards functional cells makes them suitable modalities in cellular therapy (which means treating diseases with the body's own cells). Potential targets for cellular therapy include diabetes and liver failure. However, in order for stem cells to be clinically useful, we must learn to identify them and to regulate their differentiation. We will use the intestine as a classical example of a stem cell compartment, and then examine the evidence for the existence of adult stem cells in two endodermally derived organs: pancreas and liver. We will review the characteristics of the putative stem cells in these tissues and the transcription factors controlling their differentiation towards functional cell types.


Sign in / Sign up

Export Citation Format

Share Document