scholarly journals Challenge of immune-mediated adverse reactions in the emergency department

2019 ◽  
Vol 36 (6) ◽  
pp. 369-377 ◽  
Author(s):  
Gregory A Daniels ◽  
Angela D Guerrera ◽  
Donna Katz ◽  
Jayne Viets-Upchurch

Multiple drugs of a new class of cancer treatments called immune checkpoint inhibitors, which work by enabling the immune system to attack tumour cells, have been approved for a variety of indications in recent years. Immune checkpoints, such as cytotoxic T-lymphocyte antigen-4 and programmed death-1, are part of the normal immune system and regulate immune activation. Treatment with inhibitors of these checkpoints can significantly improve response rates, progression-free survival and overall survival of patients with cancer; it can also result in adverse reactions that present similarly to other conditions. These immune-mediated adverse reactions (IMARs) are most commonly gastrointestinal, respiratory, endocrine or dermatologic. Although patients’ presentations may appear similar to other types of cancer therapy, the underlying causes, and consequently their management, may differ. Prompt recognition is critical because, with appropriate management, most IMARs resolve and patients can continue receiving immune checkpoint inhibitor treatment. Rarely, these IMARs may be life-threatening and escape detection from the usual evaluations in the emergency environment. Given the unusual spectrum and mechanism of IMARs arising from immune checkpoint inhibitors, emergency departmentED staff require a clear understanding of the evaluation of IMARs to enable them to appropriately assess and treat these patients. Treatment of IMARs, most often with high-dose steroids, differs from chemotherapy-related adverse events and when possible should be coordinated with the treating oncologist. This review summarises the ED presentation and management of IMARs arising from immune checkpoint inhibitors and includes recommendations for tools and resources for ED healthcare professionals.

2020 ◽  
Vol 58 (4) ◽  
pp. 443-446
Author(s):  
I. V. Menshikova ◽  
V. V. Strogonova

Immunotherapy with immune checkpoint inhibitors (ICIs) opens up new prospects in treatment of malignancies, although this novel therapy quite often results in development of immune-related adverse events (irAEs), which can limit their clinical use. IrAEs can affect almost any organ system, including the endocrine, respiratory, digestive, nervous, other organs and the skin. Most often irAEs are characterized by moderate degree of severity, but complications are fatal in 2% of patients.The nature of irAEs significantly differs from the adverse reactions associated with use of standard chemotherapeutic agents, which usually cause immunosuppression (due to neutropenia). Of particular interest to clinicians are rheumatic irAEs, which can occur at any time after treatment and tend to persist even after ICIs discontinuation. This review analyzes the prevalence, clinical characteristics, and approaches to treatment of rheumatic irAEs. 


2021 ◽  
Vol 11 ◽  
Author(s):  
Bonnie L. Russell ◽  
Selisha A. Sooklal ◽  
Sibusiso T. Malindisa ◽  
Lembelani Jonathan Daka ◽  
Monde Ntwasa

Through genetic and epigenetic alterations, cancer cells present the immune system with a diversity of antigens or neoantigens, which the organism must distinguish from self. The immune system responds to neoantigens by activating naïve T cells, which mount an anticancer cytotoxic response. T cell activation begins when the T cell receptor (TCR) interacts with the antigen, which is displayed by the major histocompatibility complex (MHC) on antigen-presenting cells (APCs). Subsequently, accessory stimulatory or inhibitory molecules transduce a secondary signal in concert with the TCR/antigen mediated stimulus. These molecules serve to modulate the activation signal’s strength at the immune synapse. Therefore, the activation signal’s optimum amplitude is maintained by a balance between the costimulatory and inhibitory signals. This system comprises the so-called immune checkpoints such as the programmed cell death (PD-1) and Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) and is crucial for the maintenance of self-tolerance. Cancers often evade the intrinsic anti-tumor activity present in normal physiology primarily by the downregulation of T cell activation. The blockade of the immune checkpoint inhibitors using specific monoclonal antibodies has emerged as a potentially powerful anticancer therapy strategy. Several drugs have been approved mainly for solid tumors. However, it has emerged that there are innate and acquired mechanisms by which resistance is developed against these therapies. Some of these are tumor-intrinsic mechanisms, while others are tumor-extrinsic whereby the microenvironment may have innate or acquired resistance to checkpoint inhibitors. This review article will examine mechanisms by which resistance is mounted against immune checkpoint inhibitors focussing on anti-CTL4-A and anti-PD-1/PD-Ll since drugs targeting these checkpoints are the most developed.


2020 ◽  
Vol 8 (1) ◽  
pp. 9-22
Author(s):  
E. V. Shubnikova ◽  
T. M. Bukatina ◽  
N. Yu. Velts ◽  
D. A. Kaperko ◽  
G. V. Kutekhova

The introduction into clinical practice of immune checkpoint inhibitors that block cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), programmed cell death protein-1 (PD-1), and programmed cell death ligand-1 (PD-L1), has improved the prognosis of patients with malignant neoplasms of diff erent localisation. The antitumour eff ect of immune checkpoint inhibitors is based on blocking CTLA-4 and PD-1/PD-L1 signaling pathways and enhancing lymphocyte antitumour activity. However, inhibition of immune checkpoints may lead to dysregulation of immune responses and appearance of a new type of adverse reactions resulting from changes in the activity of immunocompetent cells. The aim of the study was to analyse adverse reactions associated with the use of immune checkpoint inhibitors. It was demonstrated that the structure of immune-mediated adverse reactions varied depending on the class of immune checkpoint inhibitors. The incidence of immune-mediated adverse reactions was higher with CTLA-4 inhibitors as compared with PD-1/PD-L1 inhibitors, and increased signifi cantly in the case of combination therapy. The treatment with CTLA-4 inhibitors most often resulted in skin reactions (rash, itching), gastrointestinal tract reactions (diarrhea, colitis), and endocrine gland problems (hypophysitis). The treatment with PD-1 inhibitors most often led to respiratory disorders (pneumonitis), and in some cases to gastrointestinal disorders (diarrhea, colitis), skin reactions (rash, itching), and endocrine gland problems (hypothyroidism), but they were less common. The treatment with PD-L1 inhibitors was associated with the development of pneumonitis. The development of immune-mediated adverse reactions may require discontinuation of treatment and administration of immunosuppressants, therefore early diagnosis and timely treatment of complications are important prerequisites for successful antitumour therapy. Further study of the mechanisms of immune-mediated adverse reaction development will optimise antitumour therapy with immune checkpoint inhibitors. 


Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4573
Author(s):  
Céline Pisibon ◽  
Amira Ouertani ◽  
Corine Bertolotto ◽  
Robert Ballotti ◽  
Yann Cheli

The immune system is known to help fight cancers. Ten years ago, the first immune checkpoint inhibitor targeting CTLA4 was approved by the FDA to treat patients with metastatic melanoma. Since then, immune checkpoint therapies have revolutionized the field of oncology and the treatment of cancer patients. Numerous immune checkpoint inhibitors have been developed and tested, alone or in combination with other treatments, in melanoma and other cancers, with overall clear benefits to patient outcomes. However, many patients fail to respond or develop resistance to these treatments. It is therefore essential to decipher the mechanisms of action of immune checkpoints and to understand how immune cells are affected by signaling to be able to understand and overcome resistance. In this review, we discuss the signaling and effects of each immune checkpoint on different immune cells and their biological and clinical relevance. Restoring the functionality of T cells and their coordination with other immune cells is necessary to overcome resistance and help design new clinical immunotherapy strategies. In this respect, NK cells have recently been implicated in the resistance to anti-PD1 evoked by a protein secreted by melanoma, ITGBL1. The complexity of this network will have to be considered to improve the efficiency of future immunotherapies and may lead to the discovery of new immune checkpoints.


2018 ◽  
Vol 1 (1) ◽  
pp. 28-32
Author(s):  
Piyawat Komolmit

การรักษามะเร็งด้วยแนวความคิดของการกระตุ้นให้ภูมิต้านทานของร่างกายไปทำลายเซลล์มะเร็งนั้น ปัจจุบันได้รับการพิสูจน์ชัดว่าวิธีการนี้สามารถหยุดยั้งการแพร่กระจายของเซลล์มะเร็ง โดยไม่ก่อให้เกิดภาวะแทรกซ้อนทางปฏิกิริยาภูมิต้านทานต่ออวัยวะส่วนอื่นที่รุนแรง สามารถนำมาใช้ทางคลินิกได้ ยุคของการรักษามะเร็งกำลังเปลี่ยนจากยุคของยาเคมีบำบัดเข้าสู่การรักษาด้วยภูมิต้านทาน หรือ immunotherapy ยากลุ่ม Immune checkpoint inhibitors โดยเฉพาะ PD-1 กับ CTLA-4 inhibitors จะเข้ามามีบทบาทในการรักษามะเร็งตับในระยะเวลาอันใกล้ จำเป็นแพทย์จะต้องมีความรู้ความเข้าใจในพื้นฐานของ immune checkpoints และยาที่ไปยับยั้งโมเลกุลเหล่านี้ Figure 1 เมื่อ T cells รับรู้แอนทิเจนผ่านทาง TCR/MHC จะมีปฏิกิริยาระหว่าง co-receptors หรือ immune checkpoints กับ ligands บน APCs หรือ เซลล์มะเร็ง ทั้งแบบกระตุ้น (co-stimulation) หรือยับยั้ง (co-inhibition) TCR = T cell receptor, MHC = major histocompatibility complex


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2278
Author(s):  
Afshin Derakhshani ◽  
Zeinab Rostami ◽  
Hossein Safarpour ◽  
Mahdi Abdoli Shadbad ◽  
Niloufar Sadat Nourbakhsh ◽  
...  

Over the past decade, there have been remarkable advances in understanding the signaling pathways involved in cancer development. It is well-established that cancer is caused by the dysregulation of cellular pathways involved in proliferation, cell cycle, apoptosis, cell metabolism, migration, cell polarity, and differentiation. Besides, growing evidence indicates that extracellular matrix signaling, cell surface proteoglycans, and angiogenesis can contribute to cancer development. Given the genetic instability and vast intra-tumoral heterogeneity revealed by the single-cell sequencing of tumoral cells, the current approaches cannot eliminate the mutating cancer cells. Besides, the polyclonal expansion of tumor-infiltrated lymphocytes in response to tumoral neoantigens cannot elicit anti-tumoral immune responses due to the immunosuppressive tumor microenvironment. Nevertheless, the data from the single-cell sequencing of immune cells can provide valuable insights regarding the expression of inhibitory immune checkpoints/related signaling factors in immune cells, which can be used to select immune checkpoint inhibitors and adjust their dosage. Indeed, the integration of the data obtained from the single-cell sequencing of immune cells with immune checkpoint inhibitors can increase the response rate of immune checkpoint inhibitors, decrease the immune-related adverse events, and facilitate tumoral cell elimination. This study aims to review key pathways involved in tumor development and shed light on single-cell sequencing. It also intends to address the shortcomings of immune checkpoint inhibitors, i.e., their varied response rates among cancer patients and increased risk of autoimmunity development, via applying the data from the single-cell sequencing of immune cells.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A310-A310
Author(s):  
Krishna Gunturu ◽  
Muhammad Awidi ◽  
Rojer Ranjit ◽  
Brendan Connell ◽  
Rachel Carrasquillo ◽  
...  

BackgroundICI revolutionized modern Oncology landscape and being utilized in metastatic to adjuvant and neo-adjuvant settings. As Oncologists, we are treating cancer patients with ICI every day, yet there is still a lot that is unknown about these drugs. We don’t have clear understanding of the efficacy and toxicity when sequencing one ICI for another. We conducted a retrospective review of real world data at Lahey Hospital and Medical Center to understand further and to pave path for prospective studies to understand this issue further to improve patient care.MethodsWe retrospectively reviewed Oncology patient charts who received ICI between January1, 2014 to December 18, 2018. Total 483 patients received ICI during this time frame and 22 of these patients received a second ICI either as monotherapy or in combination with other ICI or chemotherapy.ResultsA total of 22 patients received subsequent ICI after the initial ICI as showed in table 1. 15 of the 22 (68%) patients were transitioned from one ICI to another monotherapy. 11 of these patients were transitioned secondary to disease progression (73%), three had immune related adverse events and one was switched per standard of care. One patient had ICI re-challenge. Three patients had a transition from ICI monotherapy to combination ICI therapy. One patient went onto chemo-immunotherapy and 2 patients transitioned from combination ICI to chemo-immunotherapy.Abstract 284 Table 1Real world data of sequencing immune checkpoint inhibitors (ICI) after initial ICIConclusionsICI therapy is evolving and patients are being treated with multiple lines of ICI. In current practices, ICI is frequently being transitioned from cytotoxic T-lymphocyte antigen 4 (CTLA-4) and programmed cell death 1 (PD-1) or its ligand, programmed cell death ligand 1 (PD-L1) classes or combined with chemotherapy or targeted therapy. It would be prudent to explore the effects of sequencing these medications either as a monotherapy or in combination with other therapies to better serve our patients and to prevent financial toxicity.


2021 ◽  
Vol 9 (1) ◽  
pp. e001460 ◽  
Author(s):  
Xiuting Liu ◽  
Graham D Hogg ◽  
David G DeNardo

The clinical success of immune checkpoint inhibitors has highlighted the central role of the immune system in cancer control. Immune checkpoint inhibitors can reinvigorate anti-cancer immunity and are now the standard of care in a number of malignancies. However, research on immune checkpoint blockade has largely been framed with the central dogma that checkpoint therapies intrinsically target the T cell, triggering the tumoricidal potential of the adaptive immune system. Although T cells undoubtedly remain a critical piece of the story, mounting evidence, reviewed herein, indicates that much of the efficacy of checkpoint therapies may be attributable to the innate immune system. Emerging research suggests that T cell-directed checkpoint antibodies such as anti-programmed cell death protein-1 (PD-1) or programmed death-ligand-1 (PD-L1) can impact innate immunity by both direct and indirect pathways, which may ultimately shape clinical efficacy. However, the mechanisms and impacts of these activities have yet to be fully elucidated, and checkpoint therapies have potentially beneficial and detrimental effects on innate antitumor immunity. Further research into the role of innate subsets during checkpoint blockade may be critical for developing combination therapies to help overcome checkpoint resistance. The potential of checkpoint therapies to amplify innate antitumor immunity represents a promising new field that can be translated into innovative immunotherapies for patients fighting refractory malignancies.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 4583-4583
Author(s):  
Chris Labaki ◽  
Sarah Abou Alaiwi ◽  
Andrew Lachlan Schmidt ◽  
Talal El Zarif ◽  
Ziad Bakouny ◽  
...  

4583 Background: The use of High-Dose Corticosteroids (HDC) has been linked to poor outcomes in patients with lung cancer treated with immune checkpoint inhibitors (ICIs) (Ricciuti B, JCO, 2019). There is no data on the effect of HDC on renal cell carcinoma patients (RCC) treated with immunotherapy. We hypothesized that HDC use would be associated with worse outcomes in RCC patients receiving ICIs. Methods: This study evaluated a retrospective cohort of patients with RCC at Dana-Farber Cancer Institute in Boston, MA. Clinical information including demographics, IMDC risk score, RCC histology, steroid administration, ICI regimen, line of therapy, time to treatment failure (TTF) and overall survival (OS) were collected. Patients were divided into those receiving HDC (prednisone ≥10 mg or equivalent for ≥ 1 week, HDC group) or not receiving HDC (No-HDC group). HDC administration was evaluated in relation to TTF and OS in a univariate analysis (Log-rank test) and a multivariate analysis (Cox regression). Results: 190 patients with RCC receiving ICIs were included, with a median age of 59 years. HDC were administered to 56 patients and 134 patients received no (N= 116) or only low-dose (N=18) steroids. In the HDC group, 40 patients received steroids for immune-related adverse events, 8 for other cancer-related indications, and 8 for non-oncological indications. There was no difference in TTF between the HDC and No-HDC groups (12-mo TTF rate: 34.8 vs. 32.3%, respectively; log-rank p=0.65). Similarly, there was no difference in OS between the HDC and No-HDC groups (36-mo OS rate: 56.7 vs. 62.4%, respectively; log-rank p=0.97). After adjusting for IMDC risk group, RCC histology, ICI regimen type, and line of therapy, TTF and OS did not differ in the HDC group as compared to No-HDC group (HR=1.14 [95%CI: 0.80-1.62], p=0.44 and HR=1.17 [95%CI: 0.65-2.11], p=0.59, respectively). Conclusions: In this retrospective study of patients with RCC treated with ICIs, administration of high-dose corticosteroids was not associated with worse outcomes.[Table: see text]


Sign in / Sign up

Export Citation Format

Share Document