scholarly journals Cancer immunotherapy with PI3K and PD-1 dual-blockade via optimal modulation of T cell activation signal

2021 ◽  
Vol 9 (8) ◽  
pp. e002279
Author(s):  
Sho Isoyama ◽  
Shigeyuki Mori ◽  
Daisuke Sugiyama ◽  
Yasuhiro Kojima ◽  
Yasuko Tada ◽  
...  

BackgroundImmune checkpoint blockade (ICB) induces durable clinical responses in patients with various types of cancer. However, its limited clinical efficacy requires the development of better approaches. In addition to immune checkpoint molecules, tumor-infiltrating immunosuppressive cells including regulatory T cells (Tregs) play crucial roles in the immune suppressive tumor microenvironment. While phosphatidylinositol 3-kinase (PI3K) inhibition as a Treg-targeted treatment has been implicated in animal models, its effects on human Tregs and on the potential impairment of effector T cells are required to be clarified for successful cancer immunotherapy.MethodsThe impact of a selective-PI3K inhibitor ZSTK474 with or without anti-programmed cell death 1 (PD-1) monoclonal antibody on Tregs and CD8+ T cells were examined with in vivo animal models and in vitro experiments with antigen specific and non-specific fashions using peripheral blood from healthy individuals and cancer patients. Phenotypes and functions of Tregs and effector T cells were examined with comprehensive gene and protein expression assays.ResultsImproved antitumor effects by the PI3K inhibitor in combination with ICB, particularly PD-1 blockade, were observed in mice and humans. Although administration of the PI3K inhibitor at higher doses impaired activation of CD8+ T cells as well as Tregs, the optimization (doses and timing) of this combination treatment selectively decreased intratumoral Tregs, resulting in increased tumor antigen-specific CD8+ T cells in the treated mice. Moreover, on the administration of the PI3K inhibitor with the optimal dose for selectively deleting Tregs, PI3K signaling was inhibited not only in Tregs but also in activated CD8+ T cells, leading to the enhanced generation of tumor antigen-specific memory CD8+ T cells which contributed to durable antitumor immunity. These opposing outcomes between Tregs and CD8+ T cells were attributed to the high degree of dependence on T cell signaling in the former but not in the latter.ConclusionsPI3K inhibitor in the combination with ICB with the optimized protocol fine-tuned T cell activation signaling for antitumor immunity via decreasing Tregs and optimizing memory CD8+ T cell responses, illustrating a promising combination therapy.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 16-16
Author(s):  
Yixin Yao ◽  
Yuxuan Che ◽  
Yang Liu ◽  
Lingzhi Li ◽  
Alexa A Jordan ◽  
...  

Background: Mantle cell lymphoma (MCL) is an aggressive, incurable B cell malignancy. Major advances have been achieved with the development of clinically effective targeted agents including BTK and BCL-2 inhibitors. However, patients often relapse after these treatments. The emerging immune therapies combining immune checkpoint blockade and adoptive T-cell transfer are becoming increasingly desirable, but patient responses are heterogeneous, with a significant rate of failure. Tumor microenvironment (TME) plays an important role by inducing immune checkpoint and immune suppressive signaling or creating a metabolic barrier to antitumor immunity, particularly effector T-cells. To evade immune defenses, tumor and stromal cells cooperate and tactically express inhibitory ligands, such as PD-L1, while upregulating immune checkpoint receptors on effector T-cells and CAR T cells, resulting in negative signaling that leads to T-cell exhaustion, one of the major challenges in CAR T-cell therapy. Limited nutrient accessibility and a hostile immunosuppressive TME posts a strong barrier to effective immune therapies, with T-cell immunity being mostly affected. Impaired metabolism may also inhibit the function of effector T-cells while promoting suppressive activity of regulatory T-cells. Results: Our recent transcriptomic analysis of primary MCL clinical specimens comprised of microenvironment cell populations, revealed that genes related to immune function were dysregulated, particularly the genes responsible for IFNG-mediated anti-tumor immunity. Proliferation in response to TCR stimulation is an important measurement for T-cell effector function and potency. Reduced proliferation upon T-cell activation denotes T-cell dysfunction. Indeed, T-cells isolated from MCL specimens especially CAR T non-response patients exhibit diminished cell division upon stimulation with anti-CD3/CD28 beads (25-75% less expansion). To recapitulate the interplay between T-cells and TME, MCL cells were co-cultured with the non-MCL fraction from the purification, and T-cells were then phenotypically profiled. Intriguingly, MCL-derived T-cells mostly displayed exhaustion phenotypes, indicated by decreased expression of T-cell activation markers (CD25, CD28, CD38, and CD71), but increased expression of exhaustion and senescence molecules (CTLA4, LAG3 and PD-1). Moreover, MCL-derived T cells failed to induce the expression of cytokine, such as INF-γ (<1-1.8 vs. 7.1 fold induction) and TNF-α (<1-1.3 vs. 10.2 fold induction), upon TCR stimulation, in contrast to T-cells derived from healthy donors, implicative of reduced cytotoxicity towards tumor cells. The results led us to further attest our hypothesis that MCL cells induce T-cell exhaustion by modulating the expression of inhibitory molecules or immune checkpoint molecules. Metabolic fitness is crucial for T-cell survival and effector function upon activation. A stable mitochondria membrane potential (ΔΨm) is required to maintain metabolic fitness of effector T-cells. The rate of glucose uptake is considered a prominent indicator of T-cell activation. However, MCL derived T-cells displayed remarkable decreased glucose uptake (fold MFI <1-1.21 vs. 1.95), mitochondria mass (p = 0.011) and ΔΨm (fold MFI <1-1.28 vs. 1.9), compared to those from healthy donors, indicating T-cell mitochondrial biogenesis and fitness are impaired in the MCL cell dominated TME. To assess the anti-tumor immunity of T-cells in MCL, we also examined the cytotoxicity of MCL-derived tumor specific cytotoxic T-lymphocytes (CTL) and observed compromised effector activity compared to that from healthy donors. Conclusion: We presented evidence that MCL cancer cells suppress immune cell function by upregulating immunosuppressive signaling and forging a metabolic barrier to effector T-cells and immunotherapy. Targeting the MCL TME while enhancing T-cell metabolic fitness would dramatically advance current immunotherapy. Despite the success of checkpoint blockade and adoptive cell transfer therapy, complimentary approaches to overcome the metabolic barrier of immunosuppressive TME holds promise to dramatically enhance the efficacy of immunotherapies. Further, identification of the precise pathways and targets that determine T-cell metabolic fitness would facilitate developing new approaches to bolster current immunotherapy. Disclosures Wang: AstraZeneca: Consultancy, Honoraria, Other: Travel, accommodation, expenses, Research Funding; Acerta Pharma: Research Funding; Oncternal: Consultancy, Research Funding; Guidepoint Global: Consultancy; Celgene: Consultancy, Other: Travel, accommodation, expenses, Research Funding; Dava Oncology: Honoraria; Molecular Templates: Research Funding; Juno: Consultancy, Research Funding; Kite Pharma: Consultancy, Other: Travel, accommodation, expenses, Research Funding; Pulse Biosciences: Consultancy; Loxo Oncology: Consultancy, Research Funding; Lu Daopei Medical Group: Honoraria; InnoCare: Consultancy; OncLive: Honoraria; Verastem: Research Funding; VelosBio: Research Funding; OMI: Honoraria, Other: Travel, accommodation, expenses; Nobel Insights: Consultancy; Beijing Medical Award Foundation: Honoraria; Pharmacyclics: Consultancy, Honoraria, Other: Travel, accommodation, expenses, Research Funding; Janssen: Consultancy, Honoraria, Other: Travel, accommodation, expenses, Research Funding; BioInvent: Research Funding; MoreHealth: Consultancy; Targeted Oncology: Honoraria.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 5199-5199
Author(s):  
Bianca Altvater ◽  
Sibylle Pscherer ◽  
Silke Landmeier ◽  
Heribert Juergens ◽  
Claudia Rossig

Abstract Genetic modification of polyclonal T cells with tumor antigen-specific chimeric receptors (chRec) specifically redirects their effector functions towards tumor cells. However, the therapeutic value of chRec-gene-modified T cells is limited, since T cell activation by chRec fails to mediate proliferative responses, probably due to the lack of costimulatory T cell signaling in response to tumor cells. The costimulatory signaling domain of CD28 has been shown to enhance chimeric-receptor mediated proliferation in polyclonal T cell populations but not in CD8+ effector memory CTL, which represent the primary mediators of effective antitumor immunity. Indeed, alternative costimulatory molecules are now recognised as having complementary roles in the activation of antigen-experienced effector T cells. The SLAM-related receptor 2B4 (CD244), which is expressed on NK cells and on CD8+ cytotoxic T cells, is known to positively regulate T-cell-mediated cytotoxicity. We hypothesized that inclusion of the 2B4 endodomain into the chRec would enhance tumor-specific activation and proliferation of in vitro expanded effector T cells. We focused our studies on a GD2-specific scFv, which is currently being used in clinical trials for the treatment of neuroblastoma, and generated chRecs containing either the 2B4 signaling domain alone (14.G2a-2B4) or combined with TCR (14.G2a-2B4ζ). These chRecs were expressed in activated polyclonal human peripheral blood T cells using retroviral gene transfer. As controls, T cells were transduced with 14.G2aζ. High chRec surface expression was obtained for all three constructs, with 51±12% for 14.G2a-ζ, 70±15% for 14.G2a-2B4, and 53±7% for 14.G2a-2B4ζ. Immunphenotypes were dominated by a CD3+CD8+ population in all cell cultures. 51Cr-release assays showed efficient and comparable lysis of GD2+ tumor targets by T cells transduced with 14.G2a-ζ (44±10%) and 14.G2a-2B4ζ (44±3%) at an effector-to-target ratio of 40:1, whereas 2B4 alone failed to mediate specific tumor cell lysis. Intracellular cytokine secretion by chRec+ T cells was induced in response to GD2+ tumor targets by 14.G2a-ζ (mean 18.3%, range 12.1–29.7% IFN-γ+ CD3+ T cells) and 14.G2a-2B4ζ (mean 7.7%, range 6.0–11.3%). In contrast, 14.G2a-2B4 transduced T cells failed to induce IFN-γ secretion (mean 0.2%, range 0.06–0.47%). Weekly stimulations with tumor cells resulted in substantially superior expansion of T cells transduced with 14.G2a-2B4ζ (8–45fold) compared to T cells transduced with either 14.G2a-ζ (3.5–18fold) or 14.G2a-2B4 (2–4fold) over a 5 week period. It is known that T cell costimulation by CD28 receptor family members is mediated by downstream signaling involving the NFκB pathway. However in our studies, luciferase reporter gene assays failed to show a significant difference in tumor antigen-specific NFκB recruitment between T cells transduced with 14.G2aζ (240,000±5,000 RLU) and 14.G2a-2B4ζ (180,000±7,000 RLU). Although the nature of the signaling pathway mediating 2B4-induced T cell stimulation is still to be defined, our data support a costimulatory role for the activating NK cell receptor 2B4 in peripheral blood T cells. Therefore, 2B4-containing chRec may be a powerful new tool for adoptive immunotherapy of cancer.


2021 ◽  
Vol 108 (Supplement_7) ◽  
Author(s):  
Noel Donlon ◽  
Maria Davern ◽  
Andrew Sheppard ◽  
John Reynolds ◽  
Joanne Lysaght

Abstract Background Immunotherapy is being intensively investigated for its utilisation in the curative setting as a single agent and in the multimodal setting, however, the most appropriate time to incorporate ICIs remains unknown. Our study profiles systemic anti-tumour immunity perioperatively to provide a rationale for adjuvant immunotherapy. Methods Systemic immunity was immunophenotyped pre and post-oesophagectomy on days 0, 1, 3, 7 and week 6 by flow cytometry (n = 14). The frequency of circulating lymphocytes, T cells, cytotoxic and helper T lymphocytes was profiled longitudinally including the proportion of T cell subsets in circulation. This study also profiled immune checkpoint expression on circulating T cells including: PD-1, CTLA-4, TIGIT, TIM-3, LAG-3, PD-L1 and PD-L2. Markers of immunogenicity (calreticulin, HMGB1 and MIC-A/B) were also assessed. Results The frequency of circulating CD27 + T cells increases sequentially in the immediate post-operative period peaking on day 7 in OAC patients. (p < 0.01) There is a sequential decrease in the percentage of effector memory and central memory T cells in circulation and an increase in the percentage of naïve T cells in peripheral circulation of OAC patients in the immediate post-operative period. The expression of CTLA-4 on the surface of circulating CD4 + T cells decreases 6 weeks post-operatively in OAC patients. Conclusions We observed increased T cell activation and immune checkpoints immediately post-surgery with returns to baseline by week 6. These results suggest that immune checkpoint inhibitors such as anti-PD-1 may be beneficial immediately post-surgery to maintain T cell activation and prevent exhaustion of this increased population of activated T cells observed immediately post-surgery.


2018 ◽  
Vol 115 (10) ◽  
pp. 2455-2460 ◽  
Author(s):  
Lyndsay Avery ◽  
Jessica Filderman ◽  
Andrea L. Szymczak-Workman ◽  
Lawrence P. Kane

Tim-3 is highly expressed on a subset of T cells during T cell exhaustion in settings of chronic viral infection and tumors. Using lymphocytic choriomeningitis virus (LCMV) Clone 13, a model for chronic infection, we found that Tim-3 was neither necessary nor sufficient for the development of T cell exhaustion. Nonetheless, expression of Tim-3 was sufficient to drive resistance to PD-L1 blockade therapy during chronic infection. Strikingly, expression of Tim-3 promoted the development of short-lived effector T cells, at the expense of memory precursor development, after acute LCMV infection. These effects were accompanied by increased Akt/mTOR signaling in T cells expressing endogenous or ectopic Tim-3. Conversely, Akt/mTOR signaling was reduced in effector T cells from Tim-3–deficient mice. Thus, Tim-3 is essential for optimal effector T cell responses, and may also contribute to exhaustion by restricting the development of long-lived memory T cells. Taken together, our results suggest that Tim-3 is actually more similar to costimulatory receptors that are up-regulated after T cell activation than to a dominant inhibitory protein like PD-1. These findings have significant implications for the development of anti–Tim-3 antibodies as therapeutic agents.


Blood ◽  
2001 ◽  
Vol 97 (12) ◽  
pp. 3851-3859 ◽  
Author(s):  
Sandeep Krishnan ◽  
Vishal G. Warke ◽  
Madhusoodana P. Nambiar ◽  
Henry K. Wong ◽  
George C. Tsokos ◽  
...  

Human effector T cells have been difficult to isolate and characterize due to their phenotypic and functional similarity to the memory subset. In this study, a biochemical approach was used to analyze human effector CD4 T cells generated in vitro by activation with anti-CD3 and autologous monocytes for 3 to 5 days. The resultant effector cells expressed the appropriate activation/differentiation markers and secreted high levels of interferon γ (IFN-γ) when restimulated. Biochemically, effector CD4 T cells exhibited increases in total intracellular tyrosine phosphorylation and effector-associated phosphorylated species. Paradoxically, these alterations in tyrosine phosphorylation were concomitant with greatly reduced expression of CD3ζ and CD3ε signaling subunits coincident with a reduction in surface T-cell receptor (TCR) expression. Because loss of CD3ζ has also been detected in T cells isolated ex vivo from individuals with cancer, chronic viral infection, and autoimmune diseases, the requirements and kinetics of CD3ζ down-regulation were examined. The loss of CD3ζ expression persisted throughout the course of effector T-cell differentiation, was reversible on removal from the activating stimulus, and was modulated by activation conditions. These biochemical changes occurred in effector T cells generated from naive or memory CD4 T-cell precursors and distinguished effector from memory T cells. The results suggest that human effector T-cell differentiation is accompanied by alterations in the TCR signal transduction and that loss of CD3ζ expression may be a feature of chronic T-cell activation and effector generation in vivo.


Author(s):  
Juan Yang ◽  
Xianzhi Yang ◽  
Wenfeng Pan ◽  
Mingshuo Wang ◽  
Yuxiong Lu ◽  
...  

Immune checkpoint blockade (ICB) therapies such as PD-1 antibodies have produced significant clinical responses in treating a variety of human malignancies, yet only a subset of cancer patients benefit from such therapy. To improve the ICB efficacy, combinations with additional therapeutics were under intensive investigation. Recently, special dietary compositions that can lower the cancer risk or inhibit cancer progression have drawn significant attention, although few were reported to show synergistic effects with ICB therapies. Interestingly, Fucoidan is naturally derived from edible brown algae and exhibits antitumor and immunomodulatory activities. Here we discover that fucoidan-supplemented diet significantly improves the antitumor activities of PD-1 antibodies in vivo. Specifically, fucoidan as a dietary ingredient strongly inhibits tumor growth when co-administrated with PD-1 antibodies, which effects can be further strengthened when fucoidan is applied before PD-1 treatments. Immune analysis revealed that fucoidan consistently promotes the activation of tumor-infiltrating CD8+ T cells, which support the evident synergies with ICB therapies. RNAseq analysis suggested that the JAK-STAT pathway is critical for fucoidan to enhance the effector function of CD8+ T cells, which could be otherwise attenuated by disruption of the T-cell receptor (TCR)/CD3 complex on the cell surface. Mechanistically, fucoidan interacts with this complex and augments TCR-mediated signaling that cooperate with the JAK-STAT pathway to stimulate T cell activation. Taken together, we demonstrated that fucoidan is a promising dietary supplement combined with ICB therapies to treat malignancies, and dissected an underappreciated mechanism for fucoidan-elicited immunomodulatory effects in cancer.


2020 ◽  
Vol 217 (8) ◽  
Author(s):  
Kevin P. Meng ◽  
Fatemeh S. Majedi ◽  
Timothy J. Thauland ◽  
Manish J. Butte

Upon immunogenic challenge, lymph nodes become mechanically stiff as immune cells activate and proliferate within their encapsulated environments, and with resolution, they reestablish a soft baseline state. Here we show that sensing these mechanical changes in the microenvironment requires the mechanosensor YAP. YAP is induced upon activation and suppresses metabolic reprogramming of effector T cells. Unlike in other cell types in which YAP promotes proliferation, YAP in T cells suppresses proliferation in a stiffness-dependent manner by directly restricting the translocation of NFAT1 into the nucleus. YAP slows T cell responses in systemic viral infections and retards effector T cells in autoimmune diabetes. Our work reveals a paradigm whereby tissue mechanics fine-tune adaptive immune responses in health and disease.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e15203-e15203
Author(s):  
Di Zhang ◽  
Lihua Shi ◽  
Susan Tam ◽  
Man-Cheong Fung

e15203 Background: Although checkpoint inhibitor immunotherapy and adoptive T-cell therapy revolutionized cancer treatments, such approaches suffer either from lack of target specificity for checkpoint inhibitors or inability to target intracellular tumor-related antigens from CAR-T therapy. Here, we report the development of novel Tavo Immune Modulator (TIM) biologics molecules which can specifically recognize tumor antigen-specific T cells through an engineered pMHC complex with peptides derived from intracellular tumor-related antigens. These molecules can selectively activate such T cells through engineered T cell co-stimulatory modulators for enhanced tumor cell killing. Methods: NY-ESO-1 and MAGE-A10 TIM molecules were constructed as fusions of HLA-A*02:01 MHC complexed with either NY-ESO-1 (157-165) or MAGE-A10 (254-262) epitope peptides at the N-termini and various T cell costimulatory modulators at the C-termini of IgG heavy and light chains. TIM molecules were expressed in Expi293 cells and purified by Protein A affinity chromatography. Specific binding of TIM with cancer specific T cells was evaluated by immunostaining. The activation and proliferation of tumor specific CD8+ T cells were confirmed in T cell activation and recall assays. Results: Both NY-ESO-1 and MAGE-A10 specific TIM molecules were generated which recognized corresponding tumor specific T cells. NY-ESO-1 TIM engineered with IL2 could activate NY-ESO-1 specific CD8+ T cell exclusively. Engineering additional T cell costimulatory factors along with IL2 on NY-ESO-1 TIM molecule could further boost T cell proliferation and activation in T cell recall assays. Besides NY-ESO-1, combinations of T cell costimulatory factors with MAGE-A10 TIM molecules enhanced specific T cell activation. Additional in vitro and in vivo studies are ongoing to demonstrate efficacy of such novel TIM molecules in eliminating different types of NY-ESO-1 and MAGE-A10 which are over-expressed on tumor cells. Conclusions: This study demonstrates the utility of NY-ESO-1 and MAGE-A10 TIM molecules in the selective recognition and activation of tumor antigen-specific T cells. Such novel biologics molecules may provide target specificity in tumor treatment, and potential targeting of intracellular tumor-related antigens presented as peptides in MHC complexes on cell surfaces. Selective activation of tumor-specific T cells may provide a unique method for the treatment of various solid tumors and warrants further investigation.


Author(s):  
Yixiao Luo ◽  
Siyu Pei ◽  
Jing Xu ◽  
Yichuan Xiao ◽  
Xiaodong Zhu

Abstract The two-drug combined chemotherapy of platinum and fluorouracil has been reported to efficiently kill tumor cells as the first-line treatment for advanced gastric cancer. However, the effect of these drugs on T cells remains unclear. Here, we showed that T cells including CD4+ T cells and CD8+ T cells of the patients with advanced gastric cancer after platinum and fluorouracil chemotherapy exhibited enhanced ex vivo proliferation ability as compared to that before chemotherapy. In addition, platinum and fluorouracil also promoted the differentiation of human T cells into Th1 and Th9 subtypes and cytotoxic T lymphocytes (CTLs) in vitro and in vivo. Accordingly, the combination therapy greatly suppressed tumor growth with increased tumor infiltration of Th1, Th9, and CTL cells in a mouse tumor model. Moreover, in activated T cells, long-term treatment with these two drugs further facilitates T cell activation along with promoted nuclear factor-κB (NF-κB) activation. Our findings demonstrate a previously unidentified function of platinum and fluorouracil combination chemotherapy in promoting T cell–mediated antitumor immunity.


Author(s):  
Atsushi Tsuge ◽  
Sho Yonekura ◽  
Satomi Watanabe ◽  
Yuta Kurosaki ◽  
Shinsuke Hisaka ◽  
...  

<b><i>Background:</i></b> Juzentaihoto (JTT) is a Kampo prescription that has been used clinically for treating skin diseases such as atopic dermatitis in Japan. We have previously studied the anti-allergic effects of JTT on 2,4,6-trinitrochlorobenzene (TNCB)-induced contact hypersensitivity (CHS) in mice and demonstrated that it significantly suppresses ear swelling in a dose-dependent manner. However, the mechanism underlying the anti-allergic actions of JTT is obscure. <b><i>Methods:</i></b> We investigated the mechanism underlying the anti-allergic effects of JTT using a TNCB-induced murine CHS model and adoptive cell transfer experiments. <b><i>Results:</i></b> We showed that the anti-allergic effects of JTT are due to inhibition of effector T-cell activation and induction and/or activation of regulatory T cells. Furthermore, ex vivo experiments confirmed the effect of JTT on the activation of effector T cells and regulatory T cells, as interferon-γ production decreased, whereas interleukin (IL)-10 production increased, in the cultured lymphocytes obtained from 5% TNCB-sensitized mice treated with anti-CD3ε and anti-CD28 monoclonal antibodies. Flow cytometry showed that the CD4<sup>+</sup>CD25<sup>+</sup>Foxp3<sup>+</sup>, CD4<sup>+</sup>CD25<sup>+</sup>Foxp3<sup>−</sup>, and CD8<sup>+</sup>CD122<sup>+</sup> cell population increased after oral administration of JTT. Finally, the anti-allergic effect of JTT by inducing and/or activating regulatory T cells (Tregs) was confirmed to be mediated by IL-10 through in vivo neutralization experiments with anti-IL-10 monoclonal antibodies. <b><i>Conclusion:</i></b> We suggested that JTT exerts anti-allergic effects by regulating the activation of effector T cells and Tregs involved in murine CHS model.


Sign in / Sign up

Export Citation Format

Share Document