scholarly journals 198 Combination intratumoral treatment with INTASYL™ self-delivering RNAi targeting TIGIT and PD-1/PD-L1 improves tumor control compared to monotherapy in a CT26 model of murine colorectal cancer

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A213-A213
Author(s):  
Benjamin Cuiffo ◽  
Melissa Maxwell ◽  
Dingxue Yan ◽  
Andrej Jedinak ◽  
James Cardia ◽  
...  

BackgroundDespite clinical successes of immune checkpoint blockade (ICB) antibodies blocking the inhibitory receptors CTLA-4, PD-1, or PD-L1, substantial challenges remain. Many patients do not respond, and ICB treatment is associated with serious immune-related adverse effects (irAEs) which are exacerbated by combination therapies. TIGIT blockade has been demonstrated to provide tumor control in pre-clinical studies, sparking ongoing clinical trials, including those targeting TIGIT in combination with anti-PD-1 or anti-PD-L1. The INTASYL™ platform is a self-delivering RNAi technology that (1) provides efficient delivery into target cells bypassing the need for specialized formulations, mechanical perturbation, or drug delivery systems; and (2) specifically and durably silence target gene expression when administered intratumorally (IT), providing in vivo tumor control. IT administration restricts pharmacokinetics to the tumor; an attractive strategy for mitigating ICB-mediated systemic irAEs. Additionally, using INTASYL, multiple targets can be silenced in combination. Here we demonstrate the in vivo efficacy of INTASYL specifically targeting TIGIT (PH-804), PD-1 (PH-762), PD-L1 (PH-790) alone or in combination in a CT26 model of murine colorectal carcinoma.MethodsTo assess silencing activity, activated human pan-T cells were incubated in vitro with INTASYL compounds either alone or in combination and mRNA silencing was determined by qRT-PCR and protein silencing by flow cytometry. To assess in vivo tumor efficacy CT-26 cells were implanted subcutaneously into BALB/c mice. INTASYL compounds were administered IT at 1 mg/dose on Days 1, 3, 7, and 10 either as single agents (mPH-804, mPH-762, mPH-790) or in combination (mPH-804 + mPH-762 or mPH-804 + mPH-790). Controls consisted of PBS (vehicle; (IT)), and anti-TIGIT, anti-PD-1, or anti-PD-L1 antibodies (0.2 mg/dose) administered via intraperitoneal injection (IP). Tumor volumes and body weight were recorded throughout the study. Tumors were taken at the end of the study for analysis.ResultsSingle and combination knockdown of target molecules was validated at the mRNA level (=90%) by qRT-PCR and at the protein level (=80%) in activated human pan-T cells. In vivo, combination treatment with mPH-804 + mPH-762 or mPH-790 improved tumor control compared to individual monotherapies providing evidence of potential synergy. All treatments were well tolerated.Conclusionsn/aAcknowledgementsWe demonstrate the potential of INTASYL-mediated combination therapy targeting TIGIT and PD-1/PD-L1. These findings indicate that combination of TIGIT + PD-1/PD-L1 silencing improves tumor control compared to monotherapy. As INTASYL IT is efficacious and may mitigate irAEs caused by antibody ICB, INTASYL combination therapies including PH-804, PH-762 and PH-790 warrant further investigation in patients.

2019 ◽  
Vol 93 (11) ◽  
Author(s):  
Jennifer A. Juno ◽  
Kathleen M. Wragg ◽  
Anne B. Kristensen ◽  
Wen Shi Lee ◽  
Kevin J. Selva ◽  
...  

ABSTRACT Sexual HIV-1 transmission occurs primarily in the presence of semen. Although data from macaque studies suggest that CCR5+ CD4+ T cells are initial targets for HIV-1 infection, the impact of semen on T cell CCR5 expression and ligand production remains inconclusive. To determine if semen modulates the lymphocyte CCR5 receptor/ligand axis, primary human T cell CCR5 expression and natural killer (NK) cell anti-HIV-1 antibody-dependent beta chemokine production was assessed following seminal plasma (SP) exposure. Purified T cells produce sufficient quantities of RANTES to result in a significant decline in CCR5bright T cell frequency following 16 h of SP exposure (P = 0.03). Meanwhile, NK cells retain the capacity to produce limited amounts of MIP-1α/MIP-1β in response to anti-HIV-1 antibody-dependent stimulation (median, 9.5% MIP-1α+ and/or MIP-1β+), despite the immunosuppressive nature of SP. Although these in vitro experiments suggest that SP-induced CCR5 ligand production results in the loss of surface CCR5 expression on CD4+ T cells, the in vivo implications are unclear. We therefore vaginally exposed five pigtail macaques to SP and found that such exposure resulted in an increase in CCR5+ HIV-1 target cells in three of the animals. The in vivo data support a growing body of evidence suggesting that semen exposure recruits target cells to the vagina that are highly susceptible to HIV-1 infection, which has important implications for HIV-1 transmission and vaccine design. IMPORTANCE The majority of HIV-1 vaccine studies do not take into consideration the impact that semen exposure might have on the mucosal immune system. In this study, we demonstrate that seminal plasma (SP) exposure can alter CCR5 expression on T cells. Importantly, in vitro studies of T cells in culture cannot replicate the conditions under which immune cells might be recruited to the genital mucosa in vivo, leading to potentially erroneous conclusions about the impact of semen on mucosal HIV-1 susceptibility.


2015 ◽  
Vol 90 (5) ◽  
pp. 2316-2331 ◽  
Author(s):  
Nadeene E. Riddick ◽  
Fan Wu ◽  
Kenta Matsuda ◽  
Sonya Whitted ◽  
Ilnour Ourmanov ◽  
...  

ABSTRACTAfrican green monkeys (AGM) are natural hosts of simian immunodeficiency virus (SIV), and infection in these animals is generally nonpathogenic, whereas infection of nonnatural hosts, such as rhesus macaques (RM), is commonly pathogenic. CCR5 has been described as the primary entry coreceptor for SIVin vivo, while human-derived CXCR6 and GPR15 also appear to be usedin vitro. However, sooty mangabeys that are genetically deficient in CCR5 due to an out-of-frame deletion are infectible with SIVsmm, indicating that SIVsmm can use alternative coreceptorsin vivo. In this study, we examined the CCR5 dependence of SIV strains derived from vervet AGM (SIVagmVer) and the ability of AGM-derived GPR15 and CXCR6 to serve as potential entry coreceptors. We found that SIVagmVer replicated efficiently in AGM and RM peripheral blood mononuclear cells (PBMC) in the presence of the CCR5 antagonist maraviroc, despite the fact that maraviroc was capable of blocking the CCR5-tropic strains SIVmac239, SIVsmE543-3, and simian-human immunodeficiency virus SHIV-AD8 in RM PBMC. We also found that AGM CXCR6 and AGM GPR15, to a lesser extent, supported entry of pseudotype viruses bearing SIVagm envelopes, including SIVagm transmitted/founder envelopes. Lastly, we found that CCR5, GPR15, and CXCR6 mRNAs were detected in AGM and RM memory CD4+T cells. These results suggest that GPR15 and CXCR6 are expressed on AGM CD4+T cells and are potential alternative coreceptors for SIVagm usein vivo. These data suggest that the use of non-CCR5 entry pathways may be a common feature of SIV replication in natural host species, with the potential to contribute to nonpathogenicity in these animals.IMPORTANCEAfrican green monkeys (AGM) are natural hosts of SIV, and infection in these animals generally does not cause AIDS, whereas SIV-infected rhesus macaques (RM) typically develop AIDS. Although it has been reported that SIV generally uses CD4 and CCR5 to enter target cellsin vivo, other molecules, such as GPR15 and CXCR6, also function as SIV coreceptorsin vitro. In this study, we investigated whether SIV from vervet AGM can use non-CCR5 entry pathways, as has been observed in sooty mangabeys. We found that SIVagmVer efficiently replicated in AGM and RM peripheral blood mononuclear cells in the presence of the CCR5 antagonist maraviroc, suggesting that non-CCR5 entry pathways can support SIVagm entry. We found that AGM-derived GPR15 and CXCR6 support SIVagmVer entryin vitroand may serve as entry coreceptors for SIVagmin vivo, since their mRNAs were detected in AGM memory CD4+T cells, the preferred target cells of SIV.


Blood ◽  
2008 ◽  
Vol 111 (3) ◽  
pp. 1726-1734 ◽  
Author(s):  
Melanie C. Ruzek ◽  
James S. Waire ◽  
Deborah Hopkins ◽  
Gina LaCorcia ◽  
Jennifer Sullivan ◽  
...  

Abstract Antithymocyte/antilymphocyte globulins are polyclonal antihuman T-cell antibodies used clinically to treat acute transplant rejection. These reagents deplete T cells, but a rabbit antihuman thymocyte globulin has also been shown to induce regulatory T cells in vitro. To examine whether antithymocyte globulin–induced regulatory cells might be functional in vivo, we generated a corresponding rabbit antimurine thymocyte globulin (mATG) and tested its ability to induce regulatory cells in vitro and whether those cells can inhibit acute graft-versus-host disease (GVHD) in vivo upon adoptive transfer. In vitro, mATG induces a population of CD4+CD25+ T cells that express several cell surface molecules representative of regulatory T cells. These cells do not express Foxp3 at either the protein or mRNA level, but do show suppressive function both in vitro and in vivo when adoptively transferred into a model of GVHD. These results demonstrate that in a murine system, antithymocyte globulin induces cells with suppressive activity that also function in vivo to protect against acute GVHD. Thus, in both murine and human systems, antithymocyte globulins not only deplete T cells, but also appear to generate regulatory cells. The in vitro generation of regulatory cells by anti-thymocyte globulins could provide ad-ditional therapeutic modalities for immune-mediated disease.


1984 ◽  
Vol 160 (2) ◽  
pp. 552-563 ◽  
Author(s):  
A R Townsend ◽  
J J Skehel

Using genetically typed recombinant influenza A viruses that differ only in their genes for nucleoprotein, we have demonstrated that repeated stimulation in vitro of C57BL/6 spleen cells primed in vivo with E61-13-H17 (H3N2) virus results in the selection of a population of cytotoxic T lymphocytes (CTL) whose recognition of infected target cells maps to the gene for nucleoprotein of the 1968 virus. Influenza A viruses isolated between 1934 and 1979 fall into two groups defined by their ability to sensitize target cells for lysis by these CTL: 1934-1943 form one group (A/PR/8/34 related) and 1946-1979 form the second group (A/HK/8/68 related). These findings complement and extend our previous results with an isolated CTL clone with specificity for the 1934 nucleoprotein (27, 28). It is also shown that the same spleen cells derived from mice primed with E61-13-H17 virus in vivo, but maintained in identical conditions by stimulation with X31 virus (which differs from the former only in the origin of its gene for NP) in vitro, results in the selection of CTL that cross-react on target cells infected with A/PR/8/1934 (H1N1) or A/Aichi/1968 (H3N2). These results show that the influenza A virus gene for NP can play a role in selecting CTL with different specificities and implicate the NP molecule as a candidate for a target structure recognized by both subtype-directed and cross-reactive influenza A-specific cytotoxic T cells.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 12-12 ◽  
Author(s):  
Nikhil Hebbar ◽  
Rebecca Epperly ◽  
Abishek Vaidya ◽  
Sujuan Huang ◽  
Cheng Cheng ◽  
...  

Finding the ideal immunotherapy target for AML has proven challenging and is limited by overlapping expression of antigens on hematopoietic progenitor cells (HPCs) and AML blasts. Intracellular Glucose-regulated-protein 78 (GRP78) is a key UPR regulator, which normally resides in the endoplasmic reticulum (ER). GRP78 is overexpressed and translocated to the cell surface in a broad range of solid tumors and hematological malignancies in response to elevated ER stress, making it an attractive target for immune-based therapies with T cells expressing chimeric antigen receptors (CARs). The goal of this project was to determine the expression of GRP78 on pediatric AML samples, generate GRP78-CAR T cells, and evaluate their effector function against AML blasts in vitro and in vivo. To demonstrate overexpression of GRP78 in AML, we performed gene expression analysis by RNAseq on a cohort of cord blood CD34+ cell samples (N=5) and 74 primary AML samples. Primary AML samples included RUNX1-RUNX1T1 (N=7), CBFB-MYH11(N=17), KMT2A rearrangement (N=28) and NUP98 (N=22). Analysis showed increased GRP78 expression in AML samples, especially in KMT2A- and NUP98-rearranged AML. To demonstrate surface expression of GRP78, we performed flow cytometry of AML (Kg1a, MOLLM13, THP-1, MV4-11) cell lines as well as 11 primary AML samples and 5 PDX samples; non transduced (NT) T cells served as control. All AML samples, including cell lines, primary AML blasts, and PDX samples, showed increased expression of GRP78 on their cell surface in comparison to NT T cells We then designed a retroviral vector encoding a GRP78-CAR using a GRP78-specific peptide as an antigen recognition domain, and generated GRP78-CAR T cells by retroviral transduction of primary human T cells. Median transduction efficiency was 82% (± 5-8%, N=6), and immunophenotypic analysis showed a predominance of naïve and terminal effector memory subsets on day 7 after transduction (N=5). To determine the antigen specificity of GRP78-CAR T cells, we performed coculture assays in vitro with cell surface GRP78+ (AML cell lines: MOLM13, MV-4-11, and THP-1 and 3 AML PDX samples) or cell surface GRP78- (NT T cells) targets. T cells expressing CARs specific for HER2-, CD19-, or a non-functional GRP78 (DGRP78)-CAR served as negative controls. GRP78-CAR T cells secreted significant amounts of IFNg and IL-2 only in the presence of GRP78+ target cells (N=3, p<0.005); while control CAR T cells did not. GRP78-CAR T cells only killed GRP78+ target cells in standard cytotoxicity assays confirming specificity. To test the effects of GRP78-CAR T cells on normal bone marrow derived HPCs, we performed standard colony forming unit (CFU) assays post exposure to GRP78-CAR or NT T cells (effector to target (E:T) ratio 1:1 and 5:1) and determined the number of BFU-E, CFU-E, CFU-GM, and CFU-GEMM. No significant differences between GRP78-CAR and NT T cells were observed except for CFU-Es at an E:T ratio of 5:1 that was not confirmed for BFU-Es. Finally, we evaluated the antitumor activity of GRP78-CAR T cells in an in vivo xenograft AML model (MOLM13). Tumor growth was monitored by serial bioluminescence imaging. A single intravenous dose of GRP78-CAR T cells induced tumor regression, which resulted in a significant (p<0.001) survival advantage in comparison to mice that had received control CAR T cells. In conclusion, GRP78 is expressed on the cell surface of AML. GRP78-CAR T cells have potent anti-AML activity in vitro and in vivo and do not target normal HPCs. Thus, our cell therapy approach warrants further active exploration and has the potential to improve outcomes for patients with AML. Disclosures Hebbar: St. Jude: Patents & Royalties. Epperly:St. Jude: Patents & Royalties. Vaidya:St. Jude: Patents & Royalties. Gottschalk:TESSA Therapeutics: Other: research collaboration; Inmatics and Tidal: Membership on an entity's Board of Directors or advisory committees; Merck and ViraCyte: Consultancy; Patents and patent applications in the fields of T-cell & Gene therapy for cancer: Patents & Royalties. Velasquez:St. Jude: Patents & Royalties; Rally! Foundation: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5430-5430
Author(s):  
Stefanie Koristka ◽  
Marc Cartellieri ◽  
Anja Feldmann ◽  
Claudia Arndt ◽  
Irene Michalk ◽  
...  

Abstract Regulatory T cells (Tregs) play an inevitable role in immune homeostasis by maintaining self-tolerance as well as regulating the magnitude of immune responses against foreign antigens. Over the last few years, the enormous potential of adoptive Treg transfer for treatment of auto- and alloimmunity including Graft-versus-Host disease (GvHD) has been validated in a vast number of in vitro and in vivo studies. For their clinical application, all modes of action should be well understood. Regarding their cytotoxic potential, only few and conflicting data exist. On the one hand, it is assumed that Tregs are capable of inducing apoptosis of effector T cells (Teff) utilizing granzyme/perforin or FasL expression. Others claim that Tregs are not capable of suppressing Teff via programmed cell death pathways but rather induce apoptosis by cytokine deprivation. However, it is of importance to clarify whether Tregs possess a cytotoxic potential particularly when activating the cells antigen-specifically using bispecific antibodies (bsAb). In recent years, bsAb have emerged as promising tools for an antigen-specific immunotherapy of malignant diseases. Their tremendous potential for tumor therapy has been verified in a plethora of in vitro and in vivo studies as well as in first clinical trials. So far, our group was able to demonstrate that not only Teff but also Tregs can be redirected by CD3-engaging bsAb (Koristka et al., J Immunol. 2012; J Autoimmun. 2013). According to a recent presentation (Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research, 2012, abstract nr 4841), bsAb-redirected Tregs can act as killer cells and efficiently mediate cancer cell lysis. In order to shed light onto this controversial issue, we decided to analyze this question in more detail. According to our investigations tumor cell elimination of bsAb-engaged Tregs is largely dependent on the purity of isolated Treg fractions. Tregs isolated on the basis of CD25 expression exhibited a remarkable killing capacity which is most probably due to contaminating CD25+FOXP3- Teff, as highly pure (> 99 %), FACS-isolated CD4+CD25+CD127low Tregs did not display any considerable cytotoxic effect upon cross-linkage to tumor cells via bsAb. The same applies for CD45RA-sorted, expanded Tregs. In comparison to autologous, expanded Teff, tumor cell lysis was negligible. Moreover, the lack of cytotoxicity was independent of the chosen target antigen, as redirecting Tregs with two different bsAb did not result in tumor cell eradication. Besides, upon polyclonal stimulation with conventional aCD3/CD28-coated beads Tregs were not capable of eliminating target cells. Furthermore, as opposed to autologous Teff, Tregs showed only a marginal upregulation of the degranulation marker CD107a when being activated either antigen-specifically via bsAb or polyclonally via beads. Taken together, our findings clearly demonstrate that Tregs bear no considerable cytotoxic potential and hence do not contribute to cancer cell lysis, as recently claimed. On the other hand, the results show that Tregs can be activated by bsAb without the risk of cytotoxic effects against the recognized target cells. This provides the basis for the application of bsAb for a site-specific recruitment of Tregs aiming at attenuating Teff-mediated proinflammatory immune responses and tissue destruction in order to treat auto- and alloimmune diseases including GvHD. Disclosures: No relevant conflicts of interest to declare.


2004 ◽  
Vol 78 (10) ◽  
pp. 5184-5193 ◽  
Author(s):  
Diana M. Brainard ◽  
William G. Tharp ◽  
Elva Granado ◽  
Nicholas Miller ◽  
Alicja K. Trocha ◽  
...  

ABSTRACT Cell-mediated immunity depends in part on appropriate migration and localization of cytotoxic T lymphocytes (CTL), a process regulated by chemokines and adhesion molecules. Many viruses, including human immunodeficiency virus type 1 (HIV-1), encode chemotactically active proteins, suggesting that dysregulation of immune cell trafficking may be a strategy for immune evasion. HIV-1 gp120, a retroviral envelope protein, has been shown to act as a T-cell chemoattractant via binding to the chemokine receptor and HIV-1 coreceptor CXCR4. We have previously shown that T cells move away from the chemokine stromal cell-derived factor 1 (SDF-1) in a concentration-dependent and CXCR4 receptor-mediated manner. Here, we demonstrate that CXCR4-binding HIV-1 X4 gp120 causes the movement of T cells, including HIV-specific CTL, away from high concentrations of the viral protein. This migratory response is CD4 independent and inhibited by anti-CXCR4 antibodies and pertussis toxin. Additionally, the expression of X4 gp120 by target cells reduces CTL efficacy in an in vitro system designed to account for the effect of cell migration on the ability of CTL to kill their target cells. Recombinant X4 gp120 also significantly reduced antigen-specific T-cell infiltration at a site of antigen challenge in vivo. The repellant activity of HIV-1 gp120 on immune cells in vitro and in vivo was shown to be dependent on the V2 and V3 loops of HIV-1 gp120. These data suggest that the active movement of T cells away from CXCR4-binding HIV-1 gp120, which we previously termed fugetaxis, may provide a novel mechanism by which HIV-1 evades challenge by immune effector cells in vivo.


2021 ◽  
Author(s):  
◽  
Aras Toker

<p>Glatiramer acetate (GA) is approved for the treatment of relapsing-remitting multiple sclerosis (MS), and can suppress experimental autoimmune encephalomyelitis (EAE), a murine model of human MS. GA treatment is associated with the induction of anti-inflammatory TH2 responses and with the antigen specific expansion of regulatory T cells that counteract or inhibit pathogenic events in MS and EAE. These T cell mediated mechanisms of protection are considered to be a result of modulation of antigen presenting cells (APCs) by GA, rather than direct effects on T cells. However, it is unknown if GA preferentially targets a specific APC subset or can act through multiple APCs in vivo. In addition, GA-modulated innate cells may also exhibit direct antigen non-specific suppression of autoreactive cells. One objective of this study was to identify the in vivo target cell population of GA and to assess the potential of the target cells to antigen non-specifically suppress immune responses. Fluorophor-labelled GA bound to monocytes after intravenous injections, suggesting that monocytes may be the primary target of GA in vivo. In addition, intravenous GA treatment enhanced the intrinsic ability of monocytes to suppress T cell proliferation, both in vitro and in vivo. The findings of this study therefore suggest that GA-induced monocytes may contribute to GA therapy through direct mechanisms of antigen non-specific T cell immunosuppression. A further objective of this work was to investigate the potential of an in vivo drug targeting approach. This approach was hypothesised to increase the uptake of GA by the target cells and substantially improve GA treatment through antigen specific mechanisms such as induction of TH2 or regulatory T cells. Targeting antigens to professional APCs with an anti-MHC class II antibody resulted in significantly enhanced T cell proliferation in vitro. However, no EAE suppression occurred when GA was targeted to MHC class II in vivo. In addition, targeting GA specifically to monocytes also failed to suppress EAE. These findings suggest that GA treatment may selectively modulate monocytes to enhance their ability to inhibit autoreactive T cells, which could be part of the mechanism by which GA ameliorates MS. Targeting GA to a specific cell type may not be a powerful approach to improve treatment, because increased proliferation of GA specific T cells is not sufficient for disease suppression, and conjugation to antibodies may functionally reduce GA to a mere antigen devoid of immunomodulatory capacity.</p>


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Zhenhui Zhao ◽  
Yan Li ◽  
Wei Liu ◽  
Xun Li

Triple-negative breast cancer (TNBC) is a very aggressive malignant type of tumor that currently lacks effective targeted therapies. In hematological malignancies, chimeric antigen receptor T (CAR-T) cells have shown very significant antitumor ability; however, in solid tumors, the efficacy is poor. In order to apply CAR-T cells in the treatment of TNBC, in this study, constitutively activated IL-7 receptor (C7R) that has been reported is used to enhance the antitumor function of constructed CAR-T cells by ourselves. Using in vitro coincubation experiments with target cells and in vivo antitumor experiments in mice, we found that the coexpressed C7R can significantly improve the activation, cell proliferation, and cytotoxicity of CAR-T cells. In addition, the in vivo experiments suggested that the enhanced CAR-T cells displayed significant antitumor activity in a TNBC subcutaneous xenograft model, in which in vivo, the survival time of CAR-T cells was prolonged. Together, these results indicated that CAR-T cells that coexpress C7R may be a novel therapeutic strategy for TNBC.


Author(s):  
Sandra M. Gonzalez ◽  
Wbeimar Aguilar-Jimenez ◽  
Natalia Alvarez ◽  
Maria T. Rugeles

Abstract Background Dendritic cells (DCs) play a crucial role during HIV-1 transmission due to their ability to transfer virions to susceptible CD4+ T cells, particularly in the lymph nodes during antigen presentation which favors the establishment of systemic infection. As mature dendritic cells (mDCs) exhibit a greater ability to transfer virions, compared to immature DCs (iDCs), maintenance of an iDC phenotype could decrease viral transmission. The immunomodulatory vitamin D (VitD) has been shown to reduce activation and maturation of DCs; hence, we hypothesized that it would reduce viral transference by DCs. Materials and methods We evaluated the effect of in vitro treatment with a precursor of VitD, cholecalciferol, on the activation/maturation phenotype of differentiated monocyte-derived DCs and their ability to transfer HIV-1 to autologous CD4+ T cells. Results Our findings show that although cholecalciferol decreases the activation of iDCs, it did not impact the maturation phenotype after LPS treatment nor iDCs’ ability to transfer viral particles to target cells. Conclusion These findings suggest that despite cholecalciferol potentially modulates the phenotype of mucosal iDCs in vivo, such modulation might not impact the ability of these cells to transfer HIV-1 to target CD4+ T cells.


Sign in / Sign up

Export Citation Format

Share Document