scholarly journals 208 RTX-224, an engineered allogeneic red cell therapeutic expressing 4–1BBL and IL-12, activates immune cells in blood and spleen to promote tumor growth inhibition in mice

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A219-A219
Author(s):  
Anne-Sophie Dugast ◽  
Shannon McArdel ◽  
Zafira Castano ◽  
Maegan Hoover ◽  
Arjun Reddy Bollampalli ◽  
...  

BackgroundAgonist antibodies and recombinant cytokines have had limited success in the clinic due to three factors: severe toxicity leading to a narrow therapeutic index, the diminished activity of an agonistic antibody compared with natural ligand, and the lack of multiple signals needed to effectively activate most cell types. To address these limitations, Rubius Therapeutics has developed RTX-224, an allogeneic red cell therapeutic genetically engineered to express hundreds of thousands of copies of 4-1BBL and IL-12 in their natural conformation on the cell surface. RTX-224 is designed to activate four key target cell types: CD4+ and CD8+ T cells, antigen presenting cells and NK cells for a broad and effective anti-tumor response while providing improved safety due to the restricted biodistribution of red blood cells to the vasculature and spleen. Here we investigated the potential efficacy and mechanism of action of RTX-224 using the mouse surrogate mRBC-224.MethodsmRBC-224 was administered intravenously (i.v.) to normal or tumor-bearing mice (B16F10 tumor models). Blood, spleen and tumors were harvested and the pharmacodynamic effects of mRBC-224 on immune cells were evaluated.ResultsmRBC-224 administered to mice inoculated i.v. with B16F10 melanoma reduced the number of metastases (p<0.0001 and 76.8% tumor growth inhibition on Day 14). This was accompanied by increased proliferation (Ki67+) and cytotoxicity (GzmB+) of tumor-infiltrating CD8+ T cells and NK cells, and an increased CD8+ effector memory (TEM) phenotype. Similarly, mRBC-224 reduced tumor growth in the B16F10 s.c. model (p<0.0001 and 56.2% tumor growth inhibition on Day 9), and this was associated with increased frequency of activated (MHC-II+) tumor-infiltrating macrophages. Consistent with the known biodistribution of red cells, mRBC-224 did not distribute to the tumor but was predominantly localized in the blood and spleen raising the question about mRBC-224 mechanism of action in mediating antitumor responses. In normal and B16F10 s.c. tumor-bearing mice, mRBC-224 induced the activation of CD8+ T cells, NK cells and monocytes/macrophages in blood and spleen in a dose-dependent manner. PD studies in the tumor suggest that these activated immune cells are capable of trafficking from blood/spleen to the tumor. These results align with published data suggesting that activated T cells in the spleen or blood can replenish exhausted tumor-infiltrating cells.ConclusionsTaken together, these data unveil the mechanism of action of mRBC-224 and suggest that mRBC-224 activate immune cells in the spleen and blood, leading to their trafficking into the tumor microenvironment to promote efficacy.

2021 ◽  
Author(s):  
Qiang Feng ◽  
Zhida Liu ◽  
Xuexin Yu ◽  
Tongyi Huang ◽  
Jiahui Chen ◽  
...  

Nutrients and metabolites play important roles in immune functions. Recent studies show lactate instead of glucose can serve as a primary carbon fuel source for most tissues. The role of lactate in tumor immunity is not well understood with immune suppressive functions reported for lactic acid, the conjugate acid form of lactate. In this study, we report lactate increases the stemness of CD8+ T cells and augments anti-tumor immunity. Subcutaneous administration of lactate but not glucose shows CD8+ T cell-dependent tumor growth inhibition. Single cell transcriptomics analysis revealed lactate treatment increased a subpopulation of stem-like TCF-1-expressing CD8+ T cells, which is further validated by ex vivo culture of CD8+ T cells from mouse splenocytes and human peripheral blood mononuclear cells. The inhibition of histone deacetylase activity by lactate increased acetylation in the histone H3K27 site at the Tcf7 super enhancer locus and increased the gene expression of Tcf7. Adoptive transfer of CD8+ T cells pretreated with lactate in vitro showed potent tumor growth inhibition in vivo. Our results elucidate the immune protective role of lactate in anti-tumor immunity without the masking effect of acid. These results may have broad implications for T cell therapy and the understanding of lactate in immune metabolism.


2013 ◽  
Vol 335 (2) ◽  
pp. 463-471 ◽  
Author(s):  
Kun Gao ◽  
Xiaoying Li ◽  
Li Zhang ◽  
Lin Bai ◽  
Wei Dong ◽  
...  

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 7517-7517
Author(s):  
Joshua W. Keegan ◽  
Frank Borriello ◽  
Stacey M. Fernandes ◽  
Jennifer R. Brown ◽  
James A. Lederer

7517 Background: Alloplex Biotherapeutics has developed a cellular therapeutic that uses ENgineered Leukocyte ImmunoSTimulatory cell lines called ENLIST cells to activate and expand populations of tumor killing effector cells from human peripheral blood mononuclear cells (PBMCs). This process leads to a 300-fold expansion of NK cells, CD8+ T cells, NKT cells, and TCRγδ T cells that are called SUPLEXA cells, which will be cryopreserved and transferred back into patients as an autologous immune cell therapy for cancer. In this study, PBMCs from CLL patients were used to generate SUPLEXA cells as a first approach to comparatively profile SUPLEXA cells from cancer patients and normal healthy volunteers (NHVs). Methods: ENLIST cell lines were engineered by expressing curated immunomodulatory proteins in the SK-MEL-2 melanoma cell line. Two million (M) PBMCs from 10 CLL patients or 2 NHVs were incubated with 0.4 M freeze/thaw killed ENLIST cells for 5 days in XVIVO-15 medium with 2% heat-inactivated human AB serum (XAB2) and then split 1:15 in XAB2 containing IL-7 and IL-15 to expand. After 9 days, SUPLEXA cells were harvested and cryopreserved. Results: Original PBMCs and matched SUPLEXA cells from each donor were thawed and characterized by mass cytometry (CyTOF) using a 47-marker antibody panel. CyTOF staining results of PBMCs from CLL patients demonstrated approximately 95% leukemia cells and few T cells, NK cells, B cells, and monocytes. CyTOF staining of SUPLEXA cells from all 10 CLL patients showed expansion of NK cells (17%), CD8 T cells (11%), and CD4 T cells (7.5%) that were similar in phenotype to SUPLEXA cells from NHVs showing high expression of granzymes and perforin that are indicative of potent tumor cell killing activity. Cancer cells in the original CLL PBMC samples were reduced to 0.78%. However, a population of non-T/non-B cells (60% ± 9.5%) was detected in SUPLEXA cells from all CLL patients that require further characterization. Next, SUPLEXA cells from CLL and NHV patients were comparatively tested for tumor cell killing activity at 2:1, 1:1, and 1:2 effector to target cell (MEL-14 melanoma cells expressing RFP) ratios. Percent killing of tumor cells by SUPLEXA cells prepared from CLL patients (77.8% ± 2.6% at 2:1) and NHVs (81.5% ± 0.3% at 2:1) were nearly identical at all effector to target ratios. Conclusions: We demonstrate for the first time that PBMCs from CLL patients can be converted into SUPLEXA cells despite low numbers of normal immune cells at baseline and the known immunologic impairment present in CLL patients. Importantly, SUPLEXA cells derived from CLL patients acquire potent tumor killing activity that is indistinguishable from SUPLEXA cells prepared from NHVs. Taken together, these findings support the feasibility of converting PBMCs from CLL patients with low percentages of NK and T cells into an autologous cellular therapy for cancer.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A804-A804
Author(s):  
Luis Zuniga ◽  
Karan Uppal ◽  
Kathy Bang ◽  
Enping Hong ◽  
Simran Sabharwal ◽  
...  

BackgroundThe use of pattern recognition receptor agonists (PRRAs) such as Toll-like receptor (TLR) agonists is an attractive approach for cancer immunotherapy. TLR agonism elicits anti-tumor activity by activating antigen presenting cells (APCs) to promote a proinflammatory microenvironment and anti-tumor immunity. Local delivery of TLR agonists has shown encouraging preclinical and clinical anti-tumor benefit. However, intratumoral (IT) delivery of naked PRRAs may lead to rapid effusion from the tumor microenvironment, potentially impacting their effectiveness in inducing local inflammation and may promote systemic cytokine release, increasing the risk of adverse effects.MethodsTransConTM TLR7/8 Agonist was designed to address the current limitations of PRRA therapies and IT delivery through sustained and controlled release of resiquimod, a potent TLR7/8 agonist, following IT administration of a hydrogel depot.ResultsA single IT injection of TransCon TLR7/8 Agonist induced potent tumor growth inhibition in a dose-dependent manner in syngeneic mouse CT26 tumors. Following IT TransCon TLR7/8 Agonist treatment, acute and sustained upregulation of cell surface markers indicative of activation of APCs, such as CD54, CD69, and CD86, in the tumor was observed by fluorescence activated flow cytometry (FACs). Additionally, TransCon TLR7/8 Agonist treatment was associated with an increase in the frequency of APCs with an activated phenotype in tumor draining lymph nodes (LNs). Further, a concomitant potentiation in the frequency of activated CD4 and CD8 T cells in tumor draining LNs following IT TransCon TLR7/8 Agonist treatment was observed, as demonstrated by increased expression of Ki67, ICOS, or granzyme B.ConclusionsThese data support that a single IT dose of TransCon TLR7/8 Agonist can mediate robust anti-tumor activity as a monotherapy in the CT26 syngeneic mouse tumor model while promoting local activation of intratumoral APCs. Such activation may promote tumor antigen uptake and migration to tumor-associated lymphoid tissue, as evidenced by an increase in APCs with an activated phenotype in tumor draining LNs following TransCon TLR7/8 Agonist treatment. Activated tumor antigen-bearing APCs can promote the priming and activation of tumor-specific T cells in the tumor-draining LNs. Consistently, a dose-dependent increase in the frequency of T cells with an activated effector phenotype in tumor draining LNs following administration of TransCon TLR7/8 Agonist was observed. These preclinical data further support TransCon TLR7/8 Agonist as a novel and potentially efficacious PRRA therapy. A clinical trial to evaluate safety and efficacy of TransCon TLR7/8 Agonist as monotherapy, and in combination with pembrolizumab, in cancer patients has been initiated (transcendIT-101; NCT04799054).Ethics ApprovalThe animal studies performed described were performed in accordance with the “Guide for the Care and Use of Laboratory Animals: Eighth Edition” and approved by the institutional animal care and use committee (IACUC).


Author(s):  
Mohammad H. Rashid ◽  
Thaiz F. Borin ◽  
Roxan Ara ◽  
Raziye Piranlioglu ◽  
Bhagelu R. Achyut ◽  
...  

AbstractMyeloid-derived suppressor cells (MDSCs) are an indispensable component of the tumor microenvironment (TME), and our perception regarding the role of MDSCs in tumor promotion is attaining extra layer of intricacy in every study. In conjunction with MDSC’s immunosuppressive and anti-tumor immunity, they candidly facilitate tumor growth, differentiation, and metastasis in several ways that yet to be explored. Alike any other cell types, MDSCs also release a tremendous amount of exosomes or nanovesicles of endosomal origin and partake in intercellular communications by dispatching biological macromolecules. There has not been any experimental study done to characterize the role of MDSCs derived exosomes (MDSC exo) in the modulation of TME. In this study, we isolated MDSC exo and demonstrated that they carry a significant amount of proteins that play an indispensable role in tumor growth, invasion, angiogenesis, and immunomodulation. We observed higher yield and more substantial immunosuppressive potential of exosomes isolated from MDSCs in the primary tumor area than those are in the spleen or bone marrow. Our in vitro data suggest that MDSC exo are capable of hyper activating or exhausting CD8 T-cells and induce reactive oxygen species production that elicits activation-induced cell death. We confirmed the depletion of CD8 T-cells in vivo by treating the mice with MDSC exo. We also observed a reduction in pro-inflammatory M1-macrophages in the spleen of those animals. Our results indicate that immunosuppressive and tumor-promoting functions of MDSC are also implemented by MDSC-derived exosomes which would open up a new avenue of MDSC research and MDSC-targeted therapy.


2020 ◽  
Vol 69 (11) ◽  
pp. 2357-2369
Author(s):  
Naoki Umemura ◽  
Masahiro Sugimoto ◽  
Yusuke Kitoh ◽  
Masanao Saio ◽  
Hiroshi Sakagami

Abstract Myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) are both key immunosuppressive cells that contribute to tumor growth. Metabolism and immunity of tumors depend on the tumor microenvironment (TME). However, the intracellular metabolism of MDSCs and TAMs during tumor growth remains unclear. Here, we characterized CD11b+ cells isolated from a tumor-bearing mouse model to compare intratumoral TAMs and intrasplenic MDSCs. Intratumoral CD11b+ cells and intrasplenic CD11b+ cells were isolated from tumor-bearing mice at early and late stages (14 and 28 days post-cell transplantation, respectively). The cell number of intrasplenic CD11b+ significantly increased with tumor growth. These cells included neutrophils holding segmented leukocytes or monocytes with an oval nucleus and Gr-1hi IL-4Rαhi cells without immunosuppressive function against CD8 T cells. Thus, these cells were classified as MDSC-like cells (MDSC-LCs). Intratumoral CD11b+ cells included macrophages with a round nucleus and were F4/80hi Gr-1lo IL-4Rαhi cells. Early stage intratumoral CD11b+ cells inhibited CD8 T cells via TNFα. Thus, this cell population was classified as TAMs. Metabolomic analyses of intratumoral TAMs and MDSC-LCs during tumor growth were conducted. Metabolic profiles of intratumoral TAMs showed larger changes in various metabolic pathways, e.g., glycolysis, TCA cycle, and glutamic acid pathways, during tumor growth compared with MDSL-LCs. Our findings demonstrated that intratumoral TAMs showed an immunosuppressive capacity from the early tumor stage and underwent intracellular metabolism changes during tumor growth. These results clarify the intracellular metabolism of TAMs during tumor growth and contribute to our understanding of tumor immunity.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1729-1729
Author(s):  
Luis Borges ◽  
Mark A Wallet ◽  
Chiamin-Liao Bullaughey ◽  
Michael F Naso ◽  
Buddha Gurung ◽  
...  

Abstract Induced-pluripotent stem cells (iPSCs) can be differentiated into various somatic cells, including different immune cell types. We have engineered iPSC-derived NK cells with multiple features to generate therapeutic candidates designed to eliminate cancer cells while avoiding recognition by the host immune system. The unlimited replication capacity of iPSCs facilitates the engineering of several genetic modifications without the risk of driving cells to exhaustion as in the case of cell products derived from fully differentiated immune cells. Once all edits are completed, our cells are single-cell cloned and each clone is genetically characterized to select clones without off-target insertions or deletions. Following the genetic characterization, selected clones are differentiated and tested in vitro and in vivo to identify the final clinical candidate. The use of a single-cell iPSC clone enables the generation of a master cell bank producing a highly uniform cell product that can be made available off-the-shelf at any clinical site. CNTY-101 is an iPSC-derived CAR-NK clinical candidate for the treatment of B-cell malignancies. It incorporates six gene edits designed to improve persistence and functionality as well as safety. These modifications include edits to reduce graft rejection due to alloreactivity, the expression of a homeostatic cytokine to improve functionality and persistence, the introduction of a chimeric antigen receptor (CAR) targeting CD19 to mediate tumor cell engagement and killing, as well a safety switch to eliminate the cells, if ever necessary. To prevent rejection by the patient's CD8 T cells, the beta-2-microbulin (ß2M) gene was disrupted with simultaneous insertion of a transgene encoding the HLA-E protein tethered with ß2M and a peptide. HLA-E was introduced to prevent NK cell cytotoxicity against the engineered cells, which lack HLA-I. For resistance to CD4 T cell-mediated allogenic immune rejection, the class II major histocompatibility complex transactivator (CIITA) gene was disrupted with simultaneous insertion of a transgene encoding the extra-cellular and transmembrane domains of EGFR, and the NK cell growth factor IL-15. EGFR provides an elimination tag that can be engaged by clinically approved anti-EGFR antibodies, such as cetuximab. Finally, the CAR transgene targeting the CD19 antigen was inserted into the AAVS1 safe harbor locus. Our data indicates that CNTY-101 iNK cells have strong antitumor activity against lymphoma cell lines both in vitro and in vivo. In vitro, CNTY-101 eliminates lymphoma cell lines through multiple rounds of killing without reaching exhaustion. Clones expressing higher levels of IL-15 tend to have better persistence and functionality, with some clones showing robust cytotoxicity for over fifteen rounds of serial killing. In vivo, the clones that demonstrated better in vitro serial killing tend to mediate the best anti-tumor activity in lymphoma xenograft models. Upon 3 weekly doses, the most active candidate clone demonstrated significant tumor growth inhibition after administration of fresh (91 % tumor growth inhibition) or cryopreserved cells (76 % tumor growth inhibition). The efficacy of the EGFR-safety switch was also investigated both in vitro and in vivo. In vitro, addition of cetuximab to co-cultures of IL-2-activated PBMC and cells mediated antibody-dependent cellular cytotoxicity (ADCC) in a concentration-dependent fashion, with an EC50 of 2 ng/ml. In vivo, there was a 96% reduction in the number of iPSC-derived CAR-NK cells in the lungs and a 95% reduction in the number of CAR-NK cells in the blood of mice that received cetuximab versus PBS-treated mice. In summary, CNTY-101 is a novel, multi-engineered, allogeneic CAR-iNK product candidate for the treatment of B-cell malignancies. It includes multiple immune evasion features to prevent recognition by the patient's immune system and expression of IL-15 to facilitate persistence and functionality. We have initiated GMP manufacturing of CNTY-101 and plan to enter clinical trials in 2022. Disclosures Borges: Century Therapeutics: Current Employment, Current equity holder in publicly-traded company. Wallet: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Bullaughey: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Naso: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Gurung: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Keating: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Carton: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Wheeler: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Campion: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Mendonca: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Jessup: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Beqiri: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Chin: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Millar Quinn: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Morse: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shahrokh Abdolahi ◽  
Zeinab Ghazvinian ◽  
Samad Muhammadnejad ◽  
Mohammad Ahmadvand ◽  
Hamid Asadzadeh Aghdaei ◽  
...  

Recently, adaptive NK cell therapy has become a promising treatment but has limited efficacy as a monotherapy. The identification of immune checkpoint inhibitor (ICI) molecules has opened a new horizon of immunotherapy. Herein, we aimed to demonstrate the cytotoxic effects of a polytherapy consisting of ex vivo expanded IL-2-activated NK cells combined with human anti-PD-1 antibody as an important checkpoint molecule in a xenograft gastric cancer mouse model. EBV-LCL cell is used as a feeder to promote NK cell proliferation with a purity of 93.4%. Mice (NOG, female, 6–8 weeks old) with xenograft gastric tumors were treated with PBS, ex vivo IL-2-activated NK cells, IL-2-activated NK cell along with human anti-PD-1 (Nivolumab), and IL-2-activated pretreated NK cells with anti-PD-1 antibody. The cytotoxicity of ex vivo expanded NK cells against MKN-45 cells was assessed by a lactate dehydrogenase (LDH) assay. Tumor volume was evaluated for morphometric properties, and tumor-infiltrating NK cells were assessed by immunohistochemistry (IHC) and quantified by flow cytometry. Pathologic responses were considered by H and E staining. Ex vivo LDH evaluation showed the cytotoxic potential of treated NK cells against gastric cancer cell line. We indicated that the adoptive transfer of ex vivo IL-2-activated NK cells combined with anti-PD-1 resulted in tumor growth inhibition in a xenograft gastric cancer model. Mitotic count was significantly decreased (*p &lt; 0.05), and the tumor was associated with improved infiltration of NK cells in the NK-anti-PD-1 pretreated group (*p &lt; 0.05). In conclusion, the combination approach of activated NK cells and anti-PD-1 therapy results in tumor growth inhibition, accompanied by tumor immune cell infiltration in the gastric tumor model.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sheng Tu ◽  
Xu Lin ◽  
Jili Qiu ◽  
Jiaqi Zhou ◽  
Hui Wang ◽  
...  

Glioblastoma is considered to be the most malignant disease of the central nervous system, and it is often associated with poor survival. The immune microenvironment plays a key role in the development and treatment of glioblastoma. Among the different types of immune cells, tumor-associated microglia/macrophages (TAM/Ms) and CD8-positive (CD8+) T cells are the predominant immune cells, as well as the most active ones. Current studies have suggested that interaction between TAM/Ms and CD8+ T cells have numerous potential targets that will allow them to overcome malignancy in glioblastoma. In this review, we summarize the mechanism and function of TAM/Ms and CD8+ T cells involved in glioblastoma, as well as update on the relationship and crosstalk between these two cell types, to determine whether this association alters the immune status during glioblastoma development and affects optimal treatment. We focus on the molecular factors that are crucial to this interaction, and the role that this crosstalk plays in the biological processes underlying glioblastoma treatment, particularly with regard to immune therapy. We also discuss novel therapeutic targets that can aid in resolving reticular connections between TAM/Ms and CD8+ T cells, including depletion and reprogramming TAM/Ms and novel TAM/Ms-CD8+ T cell cofactors with potential translational usage. In addition, we highlight the challenges and discuss future perspectives of this crosstalk between TAM/Ms and CD8+ T cells.


Sign in / Sign up

Export Citation Format

Share Document