scholarly journals 319 The tumor-intrinsic NLRP3 inflammasome establishes a pulmonary metastatic niche via type II epithelial HSP70/TLR4 signaling and facilitates disease hyperprogression in response to immunotherapy

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A343-A343
Author(s):  
Balamayooran Theivanthiran ◽  
Fang Liu ◽  
Nicholas DeVito ◽  
Michael Plebanek ◽  
Brent Hanks

BackgroundOur understanding of those underlying mechanisms that contribute to metastatic progression in melanoma remains limited. While uncommon, melanoma hyperprogression in response to immunotherapy is likely to be an extreme form of acquired resistance. Therefore, studies that define the underlying mechanisms of these processes are expected to provide insight into the discovery of novel therapeutic targets and predictive biomarkers. We previously demonstrated that tumor-intrinsic NLRP3 drives adaptive resistance to anti-PD-1 immunotherapy (anti-PD-1) by inducing the recruitment of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) via the upregulation of CXCL5. Gain-of-function polymorphisms in the TLR4 gene have been associated with pulmonary metastases in melanoma patients. We have shown HSP70 to promote PMN-MDSC chemotaxis via the stimulation of TLR4 signaling. As a result, we hypothesized that the tumor NLRP3 inflammasome may also contribute to distant metastatic progression and disease hyperprogression during immunotherapy by establishing a long-distance signaling axis mediated by HSP70-TLR4 signaling in the lung.MethodsWe pharmacologically and genetically inhibited the NLRP3 inflammasome and HSP70 in a transgenic BRAFV600E mouse model to examine their role in distant metastatic progression before and during anti-PD-1. An inducible type II pulmonary epithelial cell-specific TLR4 knock-out mouse model was engineered to examine the role of distant HSP70-TLR4 signaling in the recruitment of PMN-MDSCs and subsequent metastatic progression to the lung. Plasma HSP70 levels were monitored in melanoma patients undergoing anti-PD-1ResultsAnti-PD-1 significantly increases CXCL2/CXCL5 expression and PMN-MDSC accumulation in the lungs of the transgenic BRAFV600E model. This effect is reversed by 1) tumor-targeted ablation and pharmacologic inhibition of NLRP3 but not systemic host knock-out of NLRP3, 2) Pharmacologic Wnt5a ligand inhibition, 3) tumor-specific ablation and inhibition of HSP70. Inducible knock-out of TLR4 in type II epithelial cells suppressed Wnt5a and CXCL5 expression and inhibited the recruitment of PMN-MDSCs to the lung in response to anti-PD-1. Tumor-specific inhibition of NLRP3/HSP70 and lung-specific ablation of TLR4 suppressed metastatic progression following anti-PD-1 in the BRAFV600E melanoma model. Combination anti-PD-1 and NLRP3 inhibition suppressed primary melanoma progression and distant melanoma metastases versus anti-PD-1 monotherapy. Elevated plasma levels of HSP70 were associated with disease hyperprogression in metastatic melanoma patients undergoing anti-PD-1Abstract 319 Figure 1Tumor-intrinsic NLRP3 inflammasome and metastasisConclusionsTogether, these results describe a novel cross-talk mechanism between the primary tumor and the lung that mediates distant metastatic progression that is accentuated following anti-PD-1 (figure 1). Future clinical studies are needed to evaluate the pharmacologic inhibition of this tumor-lung NLRP3/HSP70/TLR4/Wnt5a/CXCL5 axis on melanoma metastasis and disease hyperprogression during checkpoint inhibitor immunotherapy

2019 ◽  
Author(s):  
German I. Todorov ◽  
Karthikeyan Mayilvahanan ◽  
David Ashurov ◽  
Catarina Cunha

Autism Spectrum Disorder (ASD) is a pervasive developmental disorder, that is raising at a concerning rate. However, underlying mechanisms are still to be discovered. Obsessions and compulsions are the most debilitating aspect of these disorders (OCD), and they are the treatment priority for patients. SAPAP3 knock out mice present a reliable mouse model for repetitive compulsive behavior and are mechanistically closely related to the ASD mouse model Shank3 on a molecular level and AMPA receptor net effect. The phenotype of SAPAP3 knock out mice is obsessive grooming that leads to self-inflicted lesions by 4 months of age. Recent studies have accumulated evidence, that epigenetic mechanisms are important effectors in psychiatric conditions such as ASD and OCD. Methylation is the most studied mechanism, that recently lead to drug developments for more precise cancer treatments. We injected SAPAP3 mice with an epigenetic demethylation drug RG108 during pregnancy and delayed the onset of the phenotype in the offspring by 4 months. This result gives us clues about possible mechanism involved in OCD and ASD. Additionally, it shows that modulation of methylation mechanisms during development might be explored as a preventative treatment in the cases of high inherited risk of certain mental health conditions.


2020 ◽  
pp. 1-4 ◽  
Author(s):  
Catarina Cunha ◽  
Catarina Cunha ◽  
David Ashurov ◽  
German Todorov ◽  
Karthikeyan Mayilvahanan

Autism Spectrum Disorder (ASD) is a pervasive developmental disorder, that is rising at a concerning rate. However, underlying mechanisms are still to be discovered. Obsessions and compulsions are the most debilitating aspect of these disorders (OCD), and they are the treatment priority for patients. SAPAP3 knock out mice present a reliable mouse model for repetitive compulsive behaviour and are mechanistically closely related to the ASD mouse model Shank3 on a molecular level and AMPA receptor net effect. The phenotype of SAPAP3 knock out mice is obsessive grooming that leads to self-inflicted lesions by 4 months of age. Recent studies have accumulated evidence, that epigenetic mechanisms are important effectors in psychiatric conditions such as ASD and OCD. Methylation is the most studied mechanism, that recently leads to drug developments for more precise cancer treatments. We injected SAPAP3 mice with an epigenetic demethylation drug RG108 during pregnancy and delayed the onset of the phenotype in the offspring by 4 months. This result gives us clues about the possible mechanisms involved in OCD and ASD. Additionally, it shows that the modulation of methylation mechanisms during development might be explored as a preventative treatment in the cases of the high inherited risk of certain mental health conditions.


2019 ◽  
Author(s):  
Filippo Mancuso ◽  
Sergio Lage ◽  
Javier Rasero ◽  
José Luis Díaz-Ramón ◽  
Aintzane Apraiz ◽  
...  

AbstractAround 25% of early-stage melanoma patients eventually develop metastasis. Thus, we set out to define serological biomarkers that could be used along with clinical and histopathological features of the disease to predict these events. We previously demonstrated that in stage II melanoma patients, serum levels of dermcidin (DCD) were associated with metastatic progression. Based on the relevance of the immune response on the cancer progression and the recent association of DCD with local and systemic immune response against cancer cells, serum DCD was analyzed in a new cohort of patients along with IL-4, IL-6, IL-10, IL-17A, IFNγ TGFβ and GM-CSF. We included 448 melanoma patients, 323 of whom were diagnosed as stages I-II according to AJCC. Levels of selected cytokines were determined by ELISA and Luminex and obtained data were analyzed employing Machine Learning and Kaplan-Meier techniques to define an algorithm capable of accurately classifying early-stage melanoma patients with a high and low risk of developing metastasis. The results show that in early-stage melanoma patients, serum levels of the cytokines IL-4, GM-CSF and DCD together with the Breslow thickness are those that best predict melanoma metastasis. Moreover, resulting algorithm represents a new tool to discriminate subjects with good prognosis from those with high risk for a future metastasis.Novelty and ImpactWe have developed a prognostic equation that considers the serum IL-4, GM-CSF and DCD levels, along with the Breslow thickness to accurately classify melanoma outcome in patients. In this sense, a rigorous follow-up is recommended for early-stage melanoma patients with a high Breslow thickness, high serum IL-4 levels and low GM-CSF and DCD levels at the time of diagnosis, given the elevated risk for these patients to develop metastasis during follow-up.


2020 ◽  
Vol 27 (8) ◽  
pp. 1367-1381 ◽  
Author(s):  
Sarah Visentin ◽  
Mirela Sedić ◽  
Sandra Kraljević Pavelić ◽  
Krešimir Pavelić

The metastatic process has still not been completely elucidated, probably due to insufficient knowledge of the underlying mechanisms. Here, we provide an overview of the current findings that shed light on specific molecular alterations associated with metastasis and present novel concepts in the treatment of the metastatic process. In particular, we discuss novel pharmacological approaches in the clinical setting that target metastatic progression. New insights into the process of metastasis allow optimisation and design of new treatment strategies, especially in view of the fact that metastatic cells share common features with stem cells. Nano- and micro-technologies are herein elaborated in details as a promising therapeutic concept in targeted drug delivery for metastatic cancer. Progression in the field could provide a more efficient way to tackle metastasis and thus bring about advancements in the treatment and management of patients with advanced cancer.


2021 ◽  
Vol 9 (1) ◽  
pp. e001615
Author(s):  
Rachel A Woolaver ◽  
Xiaoguang Wang ◽  
Alexandra L Krinsky ◽  
Brittany C Waschke ◽  
Samantha M Y Chen ◽  
...  

BackgroundAntitumor immunity is highly heterogeneous between individuals; however, underlying mechanisms remain elusive, despite their potential to improve personalized cancer immunotherapy. Head and neck squamous cell carcinomas (HNSCCs) vary significantly in immune infiltration and therapeutic responses between patients, demanding a mouse model with appropriate heterogeneity to investigate mechanistic differences.MethodsWe developed a unique HNSCC mouse model to investigate underlying mechanisms of heterogeneous antitumor immunity. This model system may provide a better control for tumor-intrinsic and host-genetic variables, thereby uncovering the contribution of the adaptive immunity to tumor eradication. We employed single-cell T-cell receptor (TCR) sequencing coupled with single-cell RNA sequencing to identify the difference in TCR repertoire of CD8 tumor-infiltrating lymphocytes (TILs) and the unique activation states linked with different TCR clonotypes.ResultsWe discovered that genetically identical wild-type recipient mice responded heterogeneously to the same squamous cell carcinoma tumors orthotopically transplanted into the buccal mucosa. While tumors initially grew in 100% of recipients and most developed aggressive tumors, ~25% of recipients reproducibly eradicated tumors without intervention. Heterogeneous antitumor responses were dependent on CD8 T cells. Consistently, CD8 TILs in regressing tumors were significantly increased and more activated. Single-cell TCR-sequencing revealed that CD8 TILs from both growing and regressing tumors displayed evidence of clonal expansion compared with splenic controls. However, top TCR clonotypes and TCR specificity groups appear to be mutually exclusive between regressing and growing TILs. Furthermore, many TCRα/TCRβ sequences only occur in one recipient. By coupling single-cell transcriptomic analysis with unique TCR clonotypes, we found that top TCR clonotypes clustered in distinct activation states in regressing versus growing TILs. Intriguingly, the few TCR clonotypes shared between regressors and progressors differed greatly in their activation states, suggesting a more dominant influence from tumor microenvironment than TCR itself on T cell activation status.ConclusionsWe reveal that intrinsic differences in the TCR repertoire of TILs and their different transcriptional trajectories may underlie the heterogeneous antitumor immune responses in different hosts. We suggest that antitumor immune responses are highly individualized and different hosts employ different TCR specificities against the same tumors, which may have important implications for developing personalized cancer immunotherapy.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A828-A828
Author(s):  
Kevinn Eddy ◽  
Christina Marinaro ◽  
Maryam Rasheed ◽  
Joseph Campagnolo ◽  
Xiaoxuan Zhong ◽  
...  

BackgroundMuch progress has been made in understanding melanoma pathogenesis within the last few years through targeted therapies and immunotherapies. However, resistance to small molecule inhibitors remains an obstacle. Immunotherapies such as checkpoint inhibitors against PD-1/PD-L1 lead to durable responses but only in a subset of melanoma patients. Mouse models reflecting human cancers provide invaluable tools towards the translation of basic science discoveries to clinical therapies, but many of these in vivo studies are short-term and do not accurately mimic patient circumstances. Our lab has a melanoma-prone transgenic mouse model which is driven by ectopic expression of a normal neuronal receptor, metabotropic glutamate receptor 1 (GRM1). This mouse model recapitulates melanoma development and progression frequently associated with melanoma patients, where aberrant GRM1 expression is detected. We have shown that in >90% of late-stage melanoma patients, there is atypical GRM1 mediated signaling and expression.MethodsIn this study, we are using these mice, TGS, to determine the long-term, 18-week, therapeutic consequences of troriluzole, a prodrug for riluzole, which is an inhibitor of glutamatergic signaling plus anti-PD-1, an immune-checkpoint inhibitor. Tumor burden is monitored every 6 weeks for 18 weeks using a small imaging system, IVIS and tumor burden is quantified using ImageJ software. Blood, lymphoid, and tumor samples were collected at several time points during the study for molecular, and immune analyses.ResultsPreliminary results suggest a gender-biased treatment response and that the combination of troriluzole and anti-PD-1 is more efficacious than either agent alone. In males, a 43.9% reduction in tumor burden was observed while in females there was a 29.6% increase in tumor burden in the combination group compared to vehicle. In concordance, after the removal of the treatment modality, the male mice in the combinatorial group survived 42 days longer compared to vehicle controls with sustained tumor reduction by 68.3%. In female mice no significant advantage in survival or reduction in tumor burden was noted.ConclusionsN/A


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shuang Ding ◽  
Yu Guo ◽  
Xiaoya Chen ◽  
Silin Du ◽  
Yongliang Han ◽  
...  

AbstractThe aim of this study was to investigate the mechanisms underlying demyelination and remyelination with 7.0 T multiparameter magnetic resonance imaging (MRI) in an alternative cuprizone (CPZ) mouse model of multiple sclerosis (MS). Sixty mice were divided into six groups (n = 10, each), and these groups were imaged with 7.0 T multiparameter MRI and treated with an alternative CPZ administration schedule. T2-weighted imaging (T2WI), susceptibility-weighted imaging (SWI), and diffusion tensor imaging (DTI) were used to compare the splenium of the corpus callosum (sCC) among the groups. Prussian blue and Luxol fast blue staining were performed to assess pathology. The correlations of the mean grayscale value (mGSV) of the pathology results and the MRI metrics were analyzed to evaluate the multiparameter MRI results. One-way ANOVA and post hoc comparison showed that the normalized T2WI (T2-nor), fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) values were significantly different among the six groups, while the mean phase (Φ) value of SWI was not significantly different among the groups. Correlation analysis showed that the correlation between the T2-nor and mGSV was higher than that among the other values. The correlations among the FA, RD, MD, and mGSV remained instructive. In conclusion, ultrahigh-field multiparameter MRI can reflect the pathological changes associated with and the underlying mechanisms of demyelination and remyelination in MS after the successful establishment of an acute CPZ-induced model.


Sign in / Sign up

Export Citation Format

Share Document