scholarly journals 716 NL-201 induces inflammation in a 'cold' tumor microenvironment through upregulation of MHC-I, expansion of the TCR repertoire, and potent antitumor activity when combined with PD-1 inhibition

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A745-A745
Author(s):  
Christie Mortales ◽  
Benjamin Dutzar ◽  
Jerry Chen ◽  
Alex Chen ◽  
Justin Huard ◽  
...  

BackgroundNL-201 is a potent, selective, and long-acting computationally designed alpha-independent agonist of the IL-2 and IL-15 receptors that is being developed as an immunotherapy for cancer. Downregulation of MHC class I (MHC-I) expression by tumors is a well-known mechanism of immune escape, and IFNγ is known to upregulate MHC-I. Here, we investigated whether NL-201 monotherapy can convert a 'cold' tumor microenvironment (TME) to an immunologically 'hot' TME through IFNγ-mediated MHC-I expression. This effect could expand the TCR repertoire for increased antitumor response and improve anti-PD-1 combination therapy.MethodsFor in vitro assays, mouse splenocytes were cultured with Neo-2/15 to assess effector cell function, as well as co-cultured with B16F10 cells to assess IFNγ-induced MHC-I and PD-L1 expression. B16F10 tumors were established in C57BL/6 mice and dosed with NL-201, anti-PD-1, or both to assess in vivo efficacy. B16F10 tumors were excised and dissociated for phenotyping of tumor-infiltrating lymphocytes (TILs) using flow cytometry. For gene expression analysis, RNA and genomic DNA were extracted from tumors and submitted for NanoString Pancancer Immune Profiling and Adaptive ImmunoSEQ analysis, respectively.ResultsIn vitro, Neo-2/15 induced greater CD8+ T cell and NK cell proliferation, as well as granzyme B production and IFNγ-dependent MHC-I upregulation on B16F10 tumor cells, compared to IL-2 or IL-15. In 'cold' B16F10 syngeneic tumors, NL-201 monotherapy reduced tumor growth and induced MHC-I, IFNγ, and granzyme B upregulation. Gene expression analysis of NL-201–treated tumors demonstrated increased TCR repertoire diversity and inflammatory signature at the tumor. In addition, PD-L1 was significantly upregulated on B16F10 cells. While the B16F10 tumors exhibited resistance to anti-PD-1 monotherapy, combination treatment with NL-201 significantly improved anti-PD-1 activity. This may explain the potent anti-tumor activity of NL-201 with anti-PD-1 combination therapy.ConclusionsNL-201 induces potent inflammatory effects on effector cells and is able to turn 'cold' TMEs 'hot'. We demonstrate that NL-201 strongly upregulated MHC-I expression in vitro and in vivo via an IFNγ-dependent pathway. Increased antigen presentation drives TCR diversity while augmenting the inflammatory signature at the tumor. This adaptive response also upregulates PD-L1 expression and results in impressive antitumor activity when NL-201 and PD-1 inhibitors are co-administered. The demonstration that NL-201 can convert 'cold' tumors to immunologically 'hot' tumors may provide a novel therapeutic option for patients unresponsive to current standard of care checkpoint inhibitors. A Phase 1 study of NL-201 in patients with advanced solid tumors is currently underway (NCT04659629).Ethics ApprovalAll experiments were approved by the Institutional Animal Care and Use Committee of Bloodworks Northwest and performed under protocol 5360-03.

2021 ◽  
Vol 22 (3) ◽  
pp. 1222
Author(s):  
Cristina Cuello ◽  
Cristina A. Martinez ◽  
Josep M. Cambra ◽  
Inmaculada Parrilla ◽  
Heriberto Rodriguez-Martinez ◽  
...  

This study was designed to investigate the impact of vitrification on the transcriptome profile of blastocysts using a porcine (Sus scrofa) model and a microarray approach. Blastocysts were collected from weaned sows (n = 13). A total of 60 blastocysts were vitrified (treatment group). After warming, vitrified embryos were cultured in vitro for 24 h. Non-vitrified blastocysts (n = 40) were used as controls. After the in vitro culture period, the embryo viability was morphologically assessed. A total of 30 viable embryos per group (three pools of 10 from 4 different donors each) were subjected to gene expression analysis. A fold change cut-off of ±1.5 and a restrictive threshold at p-value < 0.05 were used to distinguish differentially expressed genes (DEGs). The survival rates of vitrified/warmed blastocysts were similar to those of the control (nearly 100%, n.s.). A total of 205 (112 upregulated and 93 downregulated) were identified in the vitrified blastocysts compared to the control group. The vitrification/warming impact was moderate, and it was mainly related to the pathways of cell cycle, cellular senescence, gap junction, and signaling for TFGβ, p53, Fox, and MAPK. In conclusion, vitrification modified the transcriptome of in vivo-derived porcine blastocysts, resulting in minor gene expression changes.


2003 ◽  
Vol 144 ◽  
pp. s102
Author(s):  
H. Hildebrand ◽  
G. Kempka ◽  
H. Ellinger ◽  
B. Stuart ◽  
B. Wahle ◽  
...  

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2975-2975 ◽  
Author(s):  
Asher Alban Chanan-Khan ◽  
Swaminathan Padmanabhan ◽  
Kena C. Miller ◽  
Paula Pera ◽  
Laurie DiMiceli ◽  
...  

Abstract Introduction: L is a more potent analogue of thalidomide with antitumor activity reported in MDS and multiple myeloma. Clinical anti-leukemic activity of L is reported for the first time by our group in pts with CLL. The underlying mechanism of its antitumor activity remains undetermined. We investigated the effect of L on the tumor microenvironment and studied the modulation of soluble cytokines and immune cells (T and NK cells) in pts receiving L. Patients and Methods: CLL pts enrolled on the clinical study with L were eligible. Pre and post (day 7) samples were obtained for evaluation of changes in serum cytokine and immune cell environment. Malignant cells were also obtained to investigate the in vitro antitumor activity of L prior to initiating treatment on clinical trial. Results: With Anexin V staining for evaluation of apoptosis induction, in vitro testing of pts samples (n=10) showed only a modest increase in apoptosis at 200mg of L - levels clinically not achievable. Yet same pts treated with L on clinical study showed significant antitumor response, suggesting the mechanism to be possibly related to modulation of the tumor microenvironment. In evaluation of the tumor cytokine microenvironment (n= 10) we noted significant L induced increase in IL-10 (n=6), IL-8 (n=8), IP-10 (n=10), IL-8 (n=8), TNF-alpha (n=4) and decrease in PDGF (n=5) and RANTES (n=5). While evaluation of the immune cell repertoire we observed an absolute increase in T-cell as well as NK-cell after treatment with L. Conclusion: Our in vitro evaluation does not suggest a direct apoptotic effect of L on the malignant CLL cells and thus support the hypothesis that the anti-leukemic effect noted in the clinical trial (reported separately) is most likely from in vivo modulation of the tumor microenvironment as is demonstrated from changes in the cytokine milieu and the cellular immune response. Collectively these changes may be responsible for the immune modulating properties of L and the resultant anti-CLL activity in pts.


2005 ◽  
Vol 441 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Paul Gallagher ◽  
Yongde Bao ◽  
Solange M.T. Serrano ◽  
Gavin D. Laing ◽  
R. David G. Theakston ◽  
...  

Blood ◽  
2009 ◽  
Vol 113 (17) ◽  
pp. 3953-3960 ◽  
Author(s):  
Andrea Ditadi ◽  
Paolo de Coppi ◽  
Olivier Picone ◽  
Laetitia Gautreau ◽  
Rim Smati ◽  
...  

Abstract We have isolated c-Kit+Lin− cells from both human and murine amniotic fluid (AF) and investigated their hematopoietic potential. In vitro, the c-Kit+Lin− population in both species displayed a multilineage hematopoietic potential, as demonstrated by the generation of erythroid, myeloid, and lymphoid cells. In vivo, cells belonging to all 3 hematopoietic lineages were found after primary and secondary transplantation of murine c-Kit+Lin− cells into immunocompromised hosts, thus demonstrating the ability of these cells to self-renew. Gene expression analysis of c-Kit+ cells isolated from murine AF confirmed these results. The presence of cells with similar characteristics in the surrounding amnion indicates the possible origin of AF c-Kit+Lin− cells. This is the first report showing that cells isolated from the AF do have hematopoietic potential; our results support the idea that AF may be a new source of stem cells for therapeutic applications.


2020 ◽  
Author(s):  
Alyssa Batista ◽  
Jeffrey J. Rodvold ◽  
Su Xian ◽  
Stephen Searles ◽  
Alyssa Lew ◽  
...  

ABSTRACTIn the tumor microenvironment local immune dysregulation is driven in part by macrophages and dendritic cells that are polarized to a mixed proinflammatory/immune suppressive phenotype. The unfolded protein response (UPR) is emerging as the possible origin of these events. Here we report that the inositol-requiring enzyme 1 (IRE1α) branch of the UPR is directly involved in the polarization of macrophages in vitro and in vivo, including the upregulation of IL-6, IL-23, Arginase1, as well as surface expression of CD86 and PD-L1. Macrophages in which the IRE1α/Xbp1 axis is blocked pharmacologically or deleted genetically have significantly reduced polarization, and CD86 and PD-L1 expression, which was induced independent of IFNγ signaling suggesting a novel mechanism in PD-L1 regulation in macrophages. Mice with IRE1α- but not Xbp1-deficient macrophages showed greater survival than controls when implanted with B16.F10 melanoma cells. Remarkably, we found a significant association between the IRE1α gene signature and CD274 gene expression in tumor-infiltrating macrophages in humans. RNASeq analysis showed that bone marrow derived macrophages with IRE1α deletion lose the integrity of the gene connectivity characteristic of regulated IRE1α-dependent decay (RIDD) and the ability to activate CD274 gene expression. Thus, the IRE1α/Xbp1 axis drives the polarization of macrophages in the tumor microenvironment initiating a complex immune dysregulation leading to failure of local immune surveillance.


2019 ◽  
Author(s):  
Pietro Delfino ◽  
Christian Neander ◽  
Dea Filippini ◽  
Sabrina L. D’Agosto ◽  
Caterina Vicentini ◽  
...  

ABSTRACTThe RAF/MEK/ERK (MAP Kinase) pathway is the index oncogenic signaling towards which many compounds have been developed and tested for the treatment of KRAS-driven cancers, including pancreatic ductal adenocarcinoma (PDA). Here, we explored the immunological changes induced by targeted MEK1/2 inhibition (MEKi) using trametinib in preclinical mouse models of PDA. We evaluated the dynamic changes in the immune contexture of mouse PDA upon MEKi using a multidimensional approach (mRNA analyses, flow cytometry, and immunophenotyping). Effect of MEKi on the viability and metabolism of macrophages was investigated in vitro. We showed that transcriptional signatures of MAP Kinase activation are enriched in aggressive human PDA subtype (squamous/basal-like/quasimesenchymal), while short term MEKi treatment in mouse PDA induced subtype switching. Integrative mRNA expression and immunophenotypic analyses showed that MEKi reshapes the immune landscape of PDA by depleting rather than reprogramming macrophages, while augmenting infiltration by neutrophils. Depletion of macrophages is observed early in the course of in vivo treatment and is at least partially due to their higher sensitivity to MEKi. Tumor-associated macrophages were consistently reported to interfere with gemcitabine uptake by PDA cells. Here, our in vivo studies show a superior antitumor activity upon combination of MEKi and gemcitabine using a sequential rather than simultaneous dosing protocol. Our results show that MEK inhibition induces a dramatic remodeling of the tumor microenvironment of mouse PDA through depletion of macrophages, which substantially improves the antitumor activity of gemcitabine.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qi Zhang ◽  
Linbo Jin ◽  
Quanxin Jin ◽  
Qiang Wei ◽  
Mingyuan Sun ◽  
...  

Melanoma is aggressive and can metastasize in the early stage of tumor. It has been proved that dihydroartemisinin (DHA) positively affects the treatment of tumors and has no apparent toxic and side effects. Our previous research has shown that DHA can suppress the formation of melanoma. However, it remains poorly established how DHA impacts the invasion and metastasis of melanoma. In this study, B16F10 and A375 cell lines and metastatic tumor models will be used to investigate the effects of DHA. The present results demonstrated that DHA inhibited the proliferative capacity in A375 and B16F10 cells. As expected, the migration capacity of A375 and B16F10 cells was also reduced after DHA administration. DHA alleviated the severity and histopathological changes of melanoma in mice. DHA induced expansion of CD8+CTL in the tumor microenvironment. By contrast, DHA inhibited Treg cells infiltration into the tumor microenvironment. DHA enhanced apoptosis of melanoma by regulating FasL expression and Granzyme B secretion in CD8+CTLs. Moreover, DHA impacts STAT3-induced EMT and MMPS in tumor tissue. Furthermore, Metabolomics analysis indicated that PGD2 and EPA significantly increased after DHA administration. In conclusion, DHA inhibited the proliferation, migration and metastasis of melanoma in vitro and in vivo. These results have important implications for the potential use of DHA in the treatment of melanoma in humans.


Sign in / Sign up

Export Citation Format

Share Document