scholarly journals Paraneoplastic neurological syndromes: a practical approach to diagnosis and management

2021 ◽  
pp. practneurol-2021-003073
Author(s):  
Sophie Binks ◽  
Christopher Uy ◽  
Jerome Honnorat ◽  
Sarosh R Irani

Paraneoplastic neurological syndromes (PNS) are the immune-mediated effects of a remote cancer and are characterised by an autoantibody response against antigens expressed by the tumour. Classically, well-characterised ‘onconeuronal’ antibodies target intracellular antigens and hence cannot access their antigens across intact cell membranes. The pathogenic mediators are likely to be neuronal-specific T cells. There is a variable response to immunotherapies and the clinical syndrome helps to direct the search for a specific set of tumours. By contrast, many newly emerging autoantibodies with oncological associations target cell surface epitopes and can exert direct pathogenic effects on both the central and peripheral nervous systems. Patients with these cell-surface directed autoantibodies often clearly respond to immunotherapies. Overall, the clinical, serological and oncological features in an individual patient helps determine the clinical relevance of the syndrome and hence guide its management. We summarise current knowledge and a practical approach to the investigation, diagnosis, treatment and outcomes of patients with suspected PNS.

Endocrinology ◽  
2005 ◽  
Vol 146 (12) ◽  
pp. 5294-5303 ◽  
Author(s):  
Luis Rodriguez ◽  
Chialing Tu ◽  
Zhiqiang Cheng ◽  
Tsui-Hua Chen ◽  
Daniel Bikle ◽  
...  

The extracellular Ca2+-sensing receptor (CaR) plays an essential role in mineral homeostasis. Studies to generate CaR-knockout (CaR−/−) mice indicate that insertion of a neomycin cassette into exon 5 of the mouse CaR gene blocks the expression of full-length CaRs. This strategy, however, allows for the expression of alternatively spliced CaRs missing exon 5 [Exon5(−)CaRs]. These experiments addressed whether growth plate chondrocytes (GPCs) from CaR−/− mice express Exon5(−)CaRs and whether these receptors activate signaling. RT-PCR and immunocytochemistry confirmed the expression of Exon5(−)CaR in growth plates from CaR−/− mice. In Chinese hamster ovary or human embryonic kidney-293 cells, recombinant human Exon5(−)CaRs failed to activate phospholipase C likely due to their inability to reach the cell surface as assessed by intact-cell ELISA and immunocytochemistry. Human Exon5(−)CaRs, however, trafficked normally to the cell surface when overexpressed in wild-type or CaR−/− GPCs. Immunocytochemistry of growth plate sections and cultured GPCs from CaR−/− mice showed easily detectable cell-membrane expression of endogenous CaRs (presumably Exon5(−)CaRs), suggesting that trafficking of this receptor form to the membrane can occur in GPCs. In GPCs from CaR−/− mice, high extracellular [Ca2+] ([Ca2+]e) increased inositol phosphate production with a potency comparable with that of wild-type GPCs. Raising [Ca2+]e also promoted the differentiation of CaR−/− GPCs as indicated by changes in proteoglycan accumulation, mineral deposition, and matrix gene expression. Taken together, our data support the idea that expression of Exon5(−)CaRs may compensate for the loss of full-length CaRs and be responsible for sensing changes in [Ca2+]e in GPCs in CaR−/− mice.


2020 ◽  
Vol 401 (12) ◽  
pp. 1389-1405
Author(s):  
Lars-Oliver Essen ◽  
Marian Samuel Vogt ◽  
Hans-Ulrich Mösch

AbstractSelective adhesion of fungal cells to one another and to foreign surfaces is fundamental for the development of multicellular growth forms and the successful colonization of substrates and host organisms. Accordingly, fungi possess diverse cell wall-associated adhesins, mostly large glycoproteins, which present N-terminal adhesion domains at the cell surface for ligand recognition and binding. In order to function as robust adhesins, these glycoproteins must be covalently linkedto the cell wall via C-terminal glycosylphosphatidylinositol (GPI) anchors by transglycosylation. In this review, we summarize the current knowledge on the structural and functional diversity of so far characterized protein families of adhesion domains and set it into a broad context by an in-depth bioinformatics analysis using sequence similarity networks. In addition, we discuss possible mechanisms for the membrane-to-cell wall transfer of fungal adhesins by membrane-anchored Dfg5 transglycosidases.


2007 ◽  
Vol 131 (7) ◽  
pp. 1117-1121 ◽  
Author(s):  
Sujata Gaitonde

Abstract Context.—This article provides an overview of the major pathologic manifestations of sinus histiocytosis with massive lymphadenopathy, including patient characteristics and current knowledge about its pathogenesis, with an emphasis on multifocal and extranodal presentation. Sinus histiocytosis with massive lymphadenopathy is a rare, nonneoplastic, idiopathic, proliferative histiocytic disorder; recognition of this disorder is important to avoid misinterpretation and subsequent unnecessary treatment. This is especially true for primary extranodal manifestation of this rare disorder. Although accurate diagnosis of this entity requires a correlation of clinical, radiologic, laboratory, and pathologic studies in most cases, it remains a disorder primarily defined by its histopathologic features and pathologic manifestations, which are key to the diagnosis. Objective.—To summarize the scientific literature, provide a concise review, and emphasize the diagnostic histopathologic features of extranodal sinus histiocytosis with massive lymphadenopathy. Data Sources.—A comprehensive literature review was undertaken to summarize the clinical and pathologic features of this disorder. Conclusions.—Sinus histiocytosis with massive lymphadenopathy is characterized by a rare, acquired, nonmalignant proliferation of distinctive histiocytes that present with lymphadenopathy or extranodal disease, primarily in children and young adults. It exhibits a broad range of clinical presentations, thus eliciting a wide differential diagnosis. The diverse clinical manifestations and frequent association with subtle or severe immunologic abnormalities suggest an immune-mediated cause. Additional studies are needed to characterize the interplay between death receptors and cytotoxic mediators and to further elucidate the loss of immune hemostasis that may underlie idiopathic histiocytic proliferations such as this.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Joey Schyns ◽  
Fabrice Bureau ◽  
Thomas Marichal

For a long time, investigations about the lung myeloid compartment have been mainly limited to the macrophages located within the airways, that is, the well-known alveolar macrophages specialized in recycling of surfactant molecules and removal of debris. However, a growing number of reports have highlighted the complexity of the lung myeloid compartment, which also encompass different subsets of dendritic cells, tissue monocytes, and nonalveolar macrophages, called interstitial macrophages (IM). Recent evidence supports that, in mice, IM perform important immune functions, including the maintenance of lung homeostasis and prevention of immune-mediated allergic airway inflammation. In this article, we describe lung IM from a historical perspective and we review current knowledge on their characteristics, ontogeny, and functions, mostly in rodents. Finally, we emphasize some important future challenges for the field.


2022 ◽  
Vol 23 (1) ◽  
pp. 525
Author(s):  
Tarina Sharma ◽  
Anwar Alam ◽  
Aquib Ehtram ◽  
Anshu Rani ◽  
Sonam Grover ◽  
...  

Mycobacterium tuberculosis (M.tb) is a successful pathogen that can reside within the alveolar macrophages of the host and can survive in a latent stage. The pathogen has evolved and developed multiple strategies to resist the host immune responses. M.tb escapes from host macrophage through evasion or subversion of immune effector functions. M.tb genome codes for PE/PPE/PE_PGRS proteins, which are intrinsically disordered, redundant and antigenic in nature. These proteins perform multiple functions that intensify the virulence competence of M.tb majorly by modulating immune responses, thereby affecting immune mediated clearance of the pathogen. The highly repetitive, redundant and antigenic nature of PE/PPE/PE_PGRS proteins provide a critical edge over other M.tb proteins in terms of imparting a higher level of virulence and also as a decoy molecule that masks the effect of effector molecules, thereby modulating immuno-surveillance. An understanding of how these proteins subvert the host immunological machinery may add to the current knowledge about M.tb virulence and pathogenesis. This can help in redirecting our strategies for tackling M.tb infections.


2022 ◽  
Vol 11 ◽  
Author(s):  
Alejandra Wu Chuang ◽  
Oliver Kepp ◽  
Guido Kroemer ◽  
Lucillia Bezu

Local anesthetics are frequently employed during surgery in order to control peri- and postoperative pain. Retrospective studies have revealed an unexpected correlation between increased long-term survival and the use of local anesthetics during oncological surgery. This effect of local anesthetics might rely on direct cytotoxic effects on malignant cells or on indirect, immune-mediated effects. It is tempting to speculate, yet needs to be formally proven, that the combination of local anesthetics with oncological surgery and conventional anticancer therapy would offer an opportunity to control residual cancer cells. This review summarizes findings from fundamental research together with clinical data on the use of local anesthetics as anticancer standalone drugs or their combination with conventional treatments. We suggest that a better comprehension of the anticancer effects of local anesthetics at the preclinical and clinical levels may broadly improve the surgical treatment of cancer.


2020 ◽  
Vol 10 ◽  
Author(s):  
Lydia Kalafati ◽  
Ioannis Mitroulis ◽  
Panayotis Verginis ◽  
Triantafyllos Chavakis ◽  
Ioannis Kourtzelis

Several lines of clinical and experimental evidence suggest that immune cell plasticity is a central player in tumorigenesis, tumor progression, and metastasis formation. Neutrophils are able to promote or inhibit tumor growth. Through their interaction with tumor cells or their crosstalk with other immune cell subsets in the tumor microenvironment, they modulate tumor cell survival. Here, we summarize current knowledge with regards to the mechanisms that underlie neutrophil–mediated effects on tumor establishment and metastasis development. We also discuss the tumor-mediated effects on granulopoiesis and neutrophil precursors in the bone marrow and the involvement of neutrophils in anti-tumor therapeutic modalities.


2019 ◽  
Vol 9 (2) ◽  
pp. 20180064 ◽  
Author(s):  
Susanne Bloch ◽  
Markus B. Tomek ◽  
Valentin Friedrich ◽  
Paul Messner ◽  
Christina Schäffer

Periodontitis is a polymicrobial, biofilm-caused, inflammatory disease affecting the tooth-supporting tissues. It is not only the leading cause of tooth loss worldwide, but can also impact systemic health. The development of effective treatment strategies is hampered by the complicated disease pathogenesis which is best described by a polymicrobial synergy and dysbiosis model. This model classifies the Gram-negative anaerobe Tannerella forsythia as a periodontal pathogen, making it a prime candidate for interference with the disease. Tannerella forsythia employs a protein O -glycosylation system that enables high-density display of nonulosonic acids via the bacterium's two-dimensional crystalline cell surface layer. Nonulosonic acids are sialic acid-like sugars which are well known for their pivotal biological roles. This review summarizes the current knowledge of T. forsythia' s unique cell envelope with a focus on composition, biosynthesis and functional implications of the cell surface O -glycan. We have obtained evidence that glycobiology affects the bacterium's immunogenicity and capability to establish itself in the polymicrobial oral biofilm. Analysis of the genomes of different T. forsythia isolates revealed that complex protein O -glycosylation involving nonulosonic acids is a hallmark of pathogenic T. forsythia strains and, thus, constitutes a valuable target for the design of novel anti-infective strategies to combat periodontitis.


2019 ◽  
Vol 20 (14) ◽  
pp. 3394 ◽  
Author(s):  
Kübra Bunte ◽  
Thomas Beikler

Innate immunity represents the semi-specific first line of defense and provides the initial host response to tissue injury, trauma, and pathogens. Innate immunity activates the adaptive immunity, and both act highly regulated together to establish and maintain tissue homeostasis. Any dysregulation of this interaction can result in chronic inflammation and autoimmunity and is thought to be a major underlying cause in the initiation and progression of highly prevalent immune-mediated inflammatory diseases (IMIDs) such as psoriasis, rheumatoid arthritis, inflammatory bowel diseases among others, and periodontitis. Th1 and Th2 cells of the adaptive immune system are the major players in the pathogenesis of IMIDs. In addition, Th17 cells, their key cytokine IL-17, and IL-23 seem to play pivotal roles. This review aims to provide an overview of the current knowledge about the differentiation of Th17 cells and the role of the IL-17/IL-23 axis in the pathogenesis of IMIDs. Moreover, it aims to review the association of these IMIDs with periodontitis and briefly discusses the therapeutic potential of agents that modulate the IL-17/IL-23 axis.


2020 ◽  
Vol 66 (5) ◽  
pp. 449-457 ◽  
Author(s):  
Claudia Romeo ◽  
Lucas A Wauters ◽  
Francesca Santicchia ◽  
Ben Dantzer ◽  
Rupert Palme ◽  
...  

Abstract Short-term elevation of glucocorticoids (GCs) is one of the major physiological mechanisms by which vertebrates cope with challenging environmental or social factors (stressors). However, when exposure to stressors occurs repeatedly or over a prolonged period of time, animals may experience chronic elevation of GCs, which reduces the immune response efficiency and can lead to higher intensity of parasitic infection. Here, we used invasive gray squirrels Sciurus carolinensis introduced in Northern Italy and their 2 most prevalent gastrointestinal parasites, the nematode Strongyloides robustus and coccidia of the genus Eimeria, as a model to investigate relationships among macroparasite infection and concentrations of fecal glucocorticoid metabolites (FGMs), an integrated measure of circulating GCs. Our results revealed an association of FGMs with infection by St. robustus, but not with coccidia. Individuals with higher FGMs appear to be responsible for the greatest St. robustus egg shedding within gray squirrel populations, thus possibly acting as superspreaders. However, FGMs were negatively associated with adult St. robustus, suggesting that the abundance of adults of this nematode species does not induce elevation in FGMs, but is only affected by it through immune-mediated effects on its fecundity. Finally, the relationship between St. robustus (both eggs and adult parasites) and FGMs was not linear, suggesting that only high levels of physiological stress influence parasite infection. Our findings highlight that the direction and magnitude of the stress–infection relationship may depend not only on the specific host–parasite system, but also on the different life stages of the same parasite.


Sign in / Sign up

Export Citation Format

Share Document