scholarly journals Th17 Cells and the IL-23/IL-17 Axis in the Pathogenesis of Periodontitis and Immune-Mediated Inflammatory Diseases

2019 ◽  
Vol 20 (14) ◽  
pp. 3394 ◽  
Author(s):  
Kübra Bunte ◽  
Thomas Beikler

Innate immunity represents the semi-specific first line of defense and provides the initial host response to tissue injury, trauma, and pathogens. Innate immunity activates the adaptive immunity, and both act highly regulated together to establish and maintain tissue homeostasis. Any dysregulation of this interaction can result in chronic inflammation and autoimmunity and is thought to be a major underlying cause in the initiation and progression of highly prevalent immune-mediated inflammatory diseases (IMIDs) such as psoriasis, rheumatoid arthritis, inflammatory bowel diseases among others, and periodontitis. Th1 and Th2 cells of the adaptive immune system are the major players in the pathogenesis of IMIDs. In addition, Th17 cells, their key cytokine IL-17, and IL-23 seem to play pivotal roles. This review aims to provide an overview of the current knowledge about the differentiation of Th17 cells and the role of the IL-17/IL-23 axis in the pathogenesis of IMIDs. Moreover, it aims to review the association of these IMIDs with periodontitis and briefly discusses the therapeutic potential of agents that modulate the IL-17/IL-23 axis.

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Julio Gálvez

The gastrointestinal tract plays a central role in immune system, being able to mount efficient immune responses against pathogens, keeping the homeostasis of the human gut. However, conditions like Crohn’s disease (CD) or ulcerative colitis (UC), the main forms of inflammatory bowel diseases (IBD), are related to an excessive and uncontrolled immune response against normal microbiota, through the activation of CD4+ T helper (Th) cells. Classically, IBD was thought to be primarily mediated by Th1 cells in CD or Th2 cells in UC, but it is now known that Th17 cells and their related cytokines are crucial mediators in both conditions. Th17 cells massively infiltrate the inflamed intestine of IBD patients, where they produce interleukin- (IL-) 17A and other cytokines, triggering and amplifying the inflammatory process. However, these cells show functional plasticity, and they can be converted into either IFN-γ producing Th1 cells or regulatory T cells. This review will summarize the current knowledge regarding the regulation and functional role of Th17 cells in the gut. Deeper insights into their plasticity in inflammatory conditions will contribute to advancing our understanding of the mechanisms that regulate mucosal homeostasis and inflammation in the gut, promoting the design of novel therapeutic approaches for IBD.


2021 ◽  
Vol 22 (14) ◽  
pp. 7506
Author(s):  
Charles Gwellem Anchang ◽  
Cong Xu ◽  
Maria Gabriella Raimondo ◽  
Raja Atreya ◽  
Andreas Maier ◽  
...  

Immune-mediated inflammatory diseases (IMIDs), such as inflammatory bowel diseases and inflammatory arthritis (e.g., rheumatoid arthritis, psoriatic arthritis), are marked by increasing worldwide incidence rates. Apart from irreversible damage of the affected tissue, the systemic nature of these diseases heightens the incidence of cardiovascular insults and colitis-associated neoplasia. Only 40–60% of patients respond to currently used standard-of-care immunotherapies. In addition to this limited long-term effectiveness, all current therapies have to be given on a lifelong basis as they are unable to specifically reprogram the inflammatory process and thus achieve a true cure of the disease. On the other hand, the development of various OMICs technologies is considered as “the great hope” for improving the treatment of IMIDs. This review sheds light on the progressive development and the numerous approaches from basic science that gradually lead to the transfer from “bench to bedside” and the implementation into general patient care procedures.


Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 352
Author(s):  
Carolina F. F. A. Costa ◽  
Benedita Sampaio-Maia ◽  
Ricardo Araujo ◽  
Diana S. Nascimento ◽  
Joana Ferreira-Gomes ◽  
...  

Fibrosis is a pathological process associated with most chronic inflammatory diseases. It is defined by an excessive deposition of extracellular matrix proteins and can affect nearly every tissue and organ system in the body. Fibroproliferative diseases, such as intestinal fibrosis, liver cirrhosis, progressive kidney disease and cardiovascular disease, often lead to severe organ damage and are a leading cause of morbidity and mortality worldwide, for which there are currently no effective therapies available. In the past decade, a growing body of evidence has highlighted the gut microbiome as a major player in the regulation of the innate and adaptive immune system, with severe implications in the pathogenesis of multiple immune-mediated disorders. Gut microbiota dysbiosis has been associated with the development and progression of fibrotic processes in various organs and is predicted to be a potential therapeutic target for fibrosis management. In this review we summarize the state of the art concerning the crosstalk between intestinal microbiota and organ fibrosis, address the relevance of diet in different fibrotic diseases and discuss gut microbiome-targeted therapeutic approaches that are current being explored.


2021 ◽  
Author(s):  
Sara Gómez-Melero ◽  
Fé Isabel García-Maceira ◽  
Tania García-Maceira ◽  
Verónica Luna-Guerrero ◽  
Gracia Montero-Peñalvo ◽  
...  

Abstract Background: CCR6 chemokine receptor is an important target in inflammatory diseases. Th17 cells express CCR6 and a number of inflammatory cytokines, including IL-17 and IL-22, which are involved in the propagation of inflammatory immune responses. CCR6 antagonist would be a potential treatment for inflammatory diseases such as psoriasis or rheumatoid arthritis. The aim of this study is to develop an antagonistic monoclonal antibody (mAb) against human CCR6 receptor (hCCR6).Results: We generate monoclonal antibodies against hCCR6 immunizing Balb/c mice with hCCR6 overexpressing cells. The antibodies were tested by flow cytometry for specific binding to hCCR6, cloned by limiting dilution and resulted in the isolation and purification monoclonal antibody 1C6. By ELISA and flow cytometry, was determined that the antibody obtained binds to hCCR6 N-terminal domain. The ability of 1C6 to neutralize hCCR6 signaling was tested and we determined that 1C6 antibody were able to block response in β-arrestin recruitment assay with IC50 10.23 nM, but did not inhibit calcium mobilization. In addition, we found in a chemotaxis assay that 1C6 reduces the migration of hCCR6 cells to their ligand CCL20. Finally, we determined by RT-qPCR that the expression of IL-17A in Th17 cells treated with 1C6 was inhibited.Conclusions: In the present study, we applied whole cell immunization for successfully obtain an antibody that is capable to neutralize hCCR6 signaling and to reduce hCCR6 cells migration and IL-17 expression. These results provide an efficient approach to obtain therapeutic potential antibodies in the treatment of CCR6-mediated inflammatory diseases.


2019 ◽  
Vol 26 (2) ◽  
pp. 248-258 ◽  
Author(s):  
Fernando Magro ◽  
Rosa Coelho ◽  
Armando Peixoto

Immune-mediated inflammatory diseases share several pathogenic pathways and this pushes sometimes to extrapolate from one disease or indication to others. A biosimilar can be defined as a biotherapeutic product which is similar in terms of quality, safety, and efficacy to an already licensed reference biotherapeutic product. We review the substrate for extrapolation, the current approval process for biosimilars and the pioneering studies on biosimilars performed in rheumatoid arthritis patients. A biosimilar has the same amino acid sequence as its innovator product. However, post-translational modifications can occur and the current analytical techniques do not allow the final structure. To test the efficacy in one indication, a homogeneous population should be chosen and immunogenicity features are essential in switching and interchangeability. CT-P13 (Remsima™; Inflectra™) is a biosimilar of reference infliximab (Remicade®). It meets most of the requirements for extrapolation. Nevertheless, in inflammatory bowel diseases (IBD) we need more studies to confirm the postulates of extrapolation from rheumatoid arthritis and ankylosing spondylitis to IBD. Furthermore, an effective pharmacovigilance schedule is mandatory to look for immunogenicity and side effects.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Francesca A. R. Silva ◽  
Bruno L. Rodrigues ◽  
Maria de Lourdes S. Ayrizono ◽  
Raquel F. Leal

Inflammatory bowel diseases (IBDs) are chronic ailments, Crohn’s disease and ulcerative colitis being the most important. These diseases present an inflammatory profile and they differ according to pathophysiology, the affected area in the gastrointestinal tract, and the depth of the inflammation in the intestinal wall. The immune characteristics of IBD arise from abnormal responses of the innate and adaptive immune system. The number of Th17 cells increases in the peripheral blood of IBD patients, while Treg cells decrease, suggesting that the Th17/Treg proportion plays an important role in the development and maintenance of inflammation. The purpose of this review was to determine the current state of knowledge on the immunological basis of IBD. Many studies have shown the need for further explanation of the development and maintenance of the inflammatory process.


2009 ◽  
Vol 2009 ◽  
pp. 1-9 ◽  
Author(s):  
Anouk Waeytens ◽  
Martine De Vos ◽  
Debby Laukens

Inflammatory bowel diseases (IBDs) are a group of chronic, relapsing, immune-mediated disorders of the intestine, including Crohn's disease and ulcerative colitis. Recent studies underscore the importance of the damaged epithelial barrier and the dysregulated innate immune system in their pathogenesis. Metallothioneins (MTs) are a family of small proteins with a high and conserved cysteine content that are rapidly upregulated in response to an inflammatory stimulus. Herein, we review the current knowledge regarding the expression and potential role of MTs in IBD. MTs exert a central position in zinc homeostasis, modulate the activation of the transcription factor nuclear factor (NF)-B, and serve as antioxidants. In addition, MTs could be involved in IBD through their antiapoptotic effects or through specific immunomodulating extracellular effects. Reports on MT expression in IBD are contradictory but clearly demonstrate a deviant MT expression supporting the idea that these aberrations in IBD require further clarification.


2014 ◽  
Vol 112 (10) ◽  
pp. 649-658 ◽  
Author(s):  
Berthold Hoppe

SummaryFibrinogen and factor XIII are two essential proteins that are involved directly in fibrin gel formation as the final step of a sequence of reactions triggered by a procoagulant stimulus. Haemostasis is the most obvious function of the resulting fibrin clot. Different variables affect the conversion of fibrinogen to fibrin as well as the mode of fibrin polymerisation and fibrin crosslinking, hereby, critically influencing the architecture of the resulting fibrin network and consequently determining its mechanical strength and resistance against fibrinolysis. Due to fibrinogen’s structure with a multitude of domains and binding motifs the fibrin gel allows for complex interactions with other coagulation factors, with profibrinolytic as well as antifibrinolyic proteins, with complement factors and with various cellular receptors. These interactions enable the fibrin network to control its own further state (i. e. expansion or degradation), to influence innate immunity, and to function as a scaffold for cell migration processes. During the whole process of fibrin gel formation biologically active peptides and protein fragments are released that additionally influence cellular processes via chemotaxis or by modulating cell-cell interactions. Thus, it is not surprising that fibrinogen and factor XIII in addition to their haemostatic function influence innate immunity as well as cell-mediated reactions like wound healing, response to tissue injury or inflammatory processes. The present review summarises current knowledge of fibrinogen’s and factor XIII’s function in coagulation and fibrinolysis giving special emphasis on their relation to inflammation control.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tamsin Cargill ◽  
Emma L. Culver

B cells form a branch of the adaptive immune system, essential for the body’s immune defense against pathogens. B cell dysfunction has been implicated in the pathogenesis of immune mediated liver diseases including autoimmune hepatitis, IgG4-related hepatobiliary disease, primary biliary cholangitis and primary sclerosing cholangitis. B cells may initiate and maintain immune related liver diseases in several ways including the production of autoantibodies and the activation of T cells via antigen presentation or cytokine production. Here we comprehensively review current knowledge on B cell mechanisms in immune mediated liver diseases, exploring disease pathogenesis, B cell therapies, and novel treatment targets. We identify key areas where future research should focus to enable the development of targeted B cell therapies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Praxedis Martin ◽  
Jérémie D. Goldstein ◽  
Loïc Mermoud ◽  
Alejandro Diaz-Barreiro ◽  
Gaby Palmer

Interleukin (IL)-1 family cytokines initiate inflammatory responses, and shape innate and adaptive immunity. They play important roles in host defense, but excessive immune activation can also lead to the development of chronic inflammatory diseases. Dysregulated IL-1 family signaling is observed in a variety of skin disorders. In particular, IL-1 family cytokines have been linked to the pathogenesis of psoriasis and atopic dermatitis. The biological activity of pro-inflammatory IL-1 family agonists is controlled by the natural receptor antagonists IL-1Ra and IL-36Ra, as well as by the regulatory cytokines IL-37 and IL-38. These four anti-inflammatory IL-1 family members are constitutively and highly expressed at steady state in the epidermis, where keratinocytes are a major producing cell type. In this review, we provide an overview of the current knowledge concerning their regulatory roles in skin biology and inflammation and their therapeutic potential in human inflammatory skin diseases. We further highlight some common misunderstandings and less well-known observations, which persist in the field despite recent extensive interest for these cytokines.


Sign in / Sign up

Export Citation Format

Share Document