scholarly journals Effect of cobalt supplementation on lamb growth rates in the face of cobalt deficiency

2020 ◽  
Vol 8 (2) ◽  
pp. e001099
Author(s):  
Kim Hamer ◽  
Hannah Mylin ◽  
Donald Barrie ◽  
Valentina Busin ◽  
Katharine Denholm

A hill farm in eastern Scotland had noted poor lamb growth rates since 2014. Cobalt, selenium and copper deficiencies were reported from historical blood sample results, and trace element supplementation had been administered to the ewes, but not the lambs. A supplementation trial was undertaken in 2018 to compare the daily liveweight gain (DLWG) between lambs supplemented with trace elements and unsupplemented lambs. The trace element supplements used were intraruminal boluses containing 51-mg cobalt, 10-mg selenium and 60-mg iodine (Downland Essential Lamb bolus, Downland). Blood samples taken two months postsupplementation showed that unsupplemented lambs had cobalt-deficient status, but not selenium deficiency. Lambs supplemented with the trace element boluses had an increase in DLWG of 49 g/day compared with unsupplemented lambs. This case confirms that cobalt supplementation on deficient farms can be associated with a significant improvement in growth rates of growing lambs on Scottish hill farms.

2019 ◽  
Vol 42 (5) ◽  
pp. 1235-1254
Author(s):  
Jemal Ahmed

Abstract This paper reports the results of trace elements geochemistry from Tigray national state, northwestern Ethiopia. The area is part of the Arabian-Nubian Shield, where the dominant exposure is low-grade metamorphic rocks and has a long history of liver-related diseases. The increase in the number of liver-related disease patients of the area has been an environmental health issue of national concern. The aim of the study is to determine the level of trace element concentrations and distributions in water and stream sediments of the area and identify the possible sources in relation to human health. Water, stream sediment and rocks samples (20 water, 20 stream sediments, and 6 rock samples) were collected in March 2011 and analyzed for major and trace element contents using ICP-MS, ICP-OES, ion Chromatography, and XRF methods. Bromine, aluminum, fluorine, arsenic, and nitrate values exceed the WHO maximum acceptable concentration (MAC) for drinking purpose. Bromine ranges from 0.11 to 1.48 mg/l show higher values in all samples, and fluorine ranges from 0.21 to 16.49 mg/l show higher values in 20% of the samples. Other trace elements are aluminum—30%, arsenic—10%, and nitrate (NO3)—10%, and they are examples of elements which have above MAC for drinking water. Selenium deficiency may be the other problematic element in the area for which its deficiency is associated with liver damage and heart muscle disorder. The concentration of cobalt and chromium exceeded world geochemical background value in average shale at most sample stations indicated that these stations were in potential risk.


Livestock ◽  
2020 ◽  
Vol 25 (1) ◽  
pp. 30-35
Author(s):  
Davinia Hinde

Trace elements are an important factor on many sheep farms and a good way to engage clients when veterinary surgeons can become involved with an aspect of on-farm nutrition. This article outlines the major trace elements required by sheep, i.e. copper, cobalt, iodine and selenium, and discusses ways in which veterinary surgeons can become engaged with farmers around trace elements such as mineral audits and pre-mating blood samples. The appropriate laboratory tests for each trace element are discussed as well as the options for treatment and prevention of deficiencies.


Nutrients ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 2112 ◽  
Author(s):  
Maria Schwarz ◽  
Kristina Lossow ◽  
Johannes F. Kopp ◽  
Tanja Schwerdtle ◽  
Anna P. Kipp

Trace elements, like Cu, Zn, Fe, or Se, are important for the proper functioning of antioxidant enzymes. However, in excessive amounts, they can also act as pro-oxidants. Accordingly, trace elements influence redox-modulated signaling pathways, such as the Nrf2 pathway. Vice versa, Nrf2 target genes belong to the group of transport and metal binding proteins. In order to investigate whether Nrf2 directly regulates the systemic trace element status, we used mice to study the effect of a constitutive, whole-body Nrf2 knockout on the systemic status of Cu, Zn, Fe, and Se. As the loss of selenoproteins under Se-deprived conditions has been described to further enhance Nrf2 activity, we additionally analyzed the combination of Nrf2 knockout with feeding diets that provide either suboptimal, adequate, or supplemented amounts of Se. Experiments revealed that the Nrf2 knockout partially affected the trace element concentrations of Cu, Zn, Fe, or Se in the intestine, liver, and/or plasma. However, aside from Fe, the other three trace elements were only marginally modulated in an Nrf2-dependent manner. Selenium deficiency mainly resulted in increased plasma Zn levels. One putative mediator could be the metal regulatory transcription factor 1, which was up-regulated with an increasing Se supply and downregulated in Se-supplemented Nrf2 knockout mice.


1988 ◽  
Vol 110 (1) ◽  
pp. 155-158 ◽  
Author(s):  
G. P. Zervas

SummaryTwo experiments were carried out to examine the value of copper, cobalt and selenium contained in soluble glass boluses as a means of providing supplementary trace elements to goats.In the first experiment 36 purebred Toggenburg goats were used and divided into two groups. One group was treated with soluble glass boluses while the other was left as control.In the second experiment 46 Saanen half-bred goats were used, divided into three groups. The first group was treated with soluble glass boluses, the second was treated with selenium injectable compound and the third was left as control.Blood samples were collected on four occasions, during an experimental period of almost 12 months and plasma copper, serum vitamin B12 and blood selenium concentrations were determined. All those measurements showed significant increases for about a year, and were due to treatment. The advantages of glass boluses were not shared by the selenium injectable compound.


2017 ◽  
Vol 62 (No. 2) ◽  
pp. 62-73 ◽  
Author(s):  
V. Schweinzer ◽  
M. Iwersen ◽  
M. Drillich ◽  
T. Wittek ◽  
A. Tichy ◽  
...  

The aim of this study was to determine the supply of 25 different macrominerals (calcium, magnesium, potassium) and trace elements (aluminium, arsenic, barium, boron, cadmium, cobalt, copper, iron, lithium, lead, manganese, molybdenum, nickel, selenium, silicon, strontium, sulphur, thallium, tin, titanium, uranium, zinc), and to ascertain the presence of any over- or undersupplies. As a second objective, we undertook a comparison of our results with existing reference values from selected literature and from laboratory analyses, with the aim of classifying the obtained results into the following categories: ‘deficiency’, ‘adequate’ and ‘oversupply’. For the study, 16 sheep and four goat farms located in the Austrian states of Upper Austria (n = 12), Carinthia (n = 6) and Vorarlberg (n = 2) were selected. From every farm, five serum blood samples were obtained by puncturing the vena jugularis to evaluate the macromineral and trace element status in clinically sound female sheep (n = 80; 12 different breeds) and female goats (n = 20; Saanen goats, Boer goats). The animals were kept for dairy farming (milking and/or meat production) or for landscaping. The mean age of both sheep and goats was 3.1 years (sheep: min. 0.5, max. 10; goats: min. 1, max. 5); 44% of the studied animals were lactating and 22% were pregnant at the time of sampling. The serum blood samples were sent to a laboratory and analysed using inductively coupled plasma optical emission spectrometry and inductively coupled plasma mass spectrometry. In summary, the supply with macrominerals and trace elements compared with reference values from the laboratory was adequate for As, Ca, Fe and Mg in sheep and for As, Ca, Cu, K, Mg and Se in goats. Although all animals in our study were examined for clinical signs of disease by the local veterinarian, oversupplies in sheep for the elements K and Mo and in goats for Fe as well as undersupplies in sheep and goats for Zn could be found in the serum of the studied animals.


Author(s):  
Tatiana Komarova ◽  
Daniel McKeating ◽  
Anthony V. Perkins ◽  
Ujang Tinggi

The levels of trace elements in whole blood and plasma have been widely used for assessing nutritional status and monitoring exposure and can vary widely in populations from different geographical regions. In this study, whole blood samples (n = 120) and plasma samples (n = 120) were obtained from healthy donors attending the Red Cross Blood Bank (Queensland Red Cross Blood Service), which provided information for age and sex. There were 71 males (age range: 19–73 years) and 49 females (age range: 18–72 years) for whole blood samples, and 59 males (age range: 19–81 years) and 61 females (age range: 19–73 years) for plasma samples. The main aim of the study was to provide information on blood reference levels of 21 trace elements (Ag, Al, As, Bi, Br, Cd, Co, Cr, Cu, Hg, I, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn) in Queensland. The study also aimed to assess differences in trace element blood levels between males and females and the effect of age. The trace element levels in blood samples were analysed using inductively coupled plasma mass spectrometry (ICP-MS) and the standard reference materials of Seronorm (Trace Elements Whole Blood) and UTAK (Trace Elements Serum) were used for quality control and assurance. The study found wide variations of trace element levels in whole blood and plasma, and generally the levels were comparable to other countries. No detectable levels were found for Bi, Cr, U and V in whole blood, but V levels were found in plasma samples. There were significant differences between males and females for whole blood Cu (p < 0.001), I (p = 0.009), Tl (p = 0.016) and Zn (p = 0.016). Significant differences were also found for plasma Cu (p < 0.001) and Se (p = 0.003) between males and females. There were trends of increased levels of blood Pb, Se and Zn with age. The study has provided further information on a wide range of trace elements in blood as reference levels for Queensland and Australia which are currently lacking.


2014 ◽  
Vol 8 (1) ◽  
pp. 35-48 ◽  
Author(s):  
Emmanuel Wafo ◽  
Véronique Risoul ◽  
Thérèse Schembri ◽  
Véronique Lagadec ◽  
Frank Dhermain ◽  
...  

The main objective of this study was to evaluate the contamination by mercury (Hg), methylmercury (Me-Hg), cadmium (Cd), selenium (Se), zinc (Zn), copper (Cu), iron (Fe) and manganese (Mn) in dolphins stranded on the French Mediterranean coast. The distributions of these contaminants in the organs of dolphins have also been studied. Overall, contamination levels varied according to the following sequence: liver > kidney > lung > muscle, except for cadmium (kidney > liver > lung > muscle). Size and sex of animals were also considered. Young dolphins were less impacted with trace elements than adults, except for copper. Among the studied parameters, the most important appeared to be the size of mammals. In addition, in the case of mercury and selenium, the sex of mammals seemed to be also relevant. The correlations between the concentrations of trace elements suggest the existence of detoxification processes. Since 1990s, using dolphins for tracing marine pollution, a slight reduction in the burden of the considered trace elements could be noted.


2020 ◽  
Vol 18 (1) ◽  
pp. 77-96
Author(s):  
Hameed Alsamadany ◽  
Hassan S. Al-Zahrani ◽  
El-Metwally M. Selim ◽  
Mohsen M. El-Sherbiny

AbstractTo assess trace element concentrations (Zn, Cu, Pb, Cr, Cd and Ni) in the mangrove swamps along the Saudi coast of the Arabian Gulf, thirteen samples of surface sediment and leaves of grey mangrove, Avicennia marina were collected and analyzed. The detected trace element contents (μg g-1) in surface sediments were in the following descending order according to their mean values; Cr (49.18) > Zn (48.48) > Cu (43.06) > Pb (26.61) > Ni (22.88) > Cd (3.21). The results showed that the average concentrations of Cd and Pb exceeded their world average concentration of shale. The geo-accumulation, potential ecological risk and toxicity response indices demonstrated that trace elements have posed a considerable ecological risk, especially Cd. The inter-relationships between physico-chemical characters and trace elements suggests that grained particles of mud represent a noteworthy character in the distribution of trace elements compared to organic materials. Moreover, the results revealed that Zn was clearly bioaccumulated in leaf tissues A. marina. Dredging, landfilling, sewage effluents and oil pollution can be the paramount sources of pollution in the area under investigation.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Carlos Velasco ◽  
Adriana Mota-Cobián ◽  
Jesús Mateo ◽  
Samuel España

Abstract Background Multi-tracer positron emission tomography (PET) imaging can be accomplished by applying multi-tracer compartment modeling. Recently, a method has been proposed in which the arterial input functions (AIFs) of the multi-tracer PET scan are explicitly derived. For that purpose, a gamma spectroscopic analysis is performed on blood samples manually withdrawn from the patient when at least one of the co-injected tracers is based on a non-pure positron emitter. Alternatively, these blood samples required for the spectroscopic analysis may be obtained and analyzed on site by an automated detection device, thus minimizing analysis time and radiation exposure of the operating personnel. In this work, a new automated blood sample detector based on silicon photomultipliers (SiPMs) for single- and multi-tracer PET imaging is presented, characterized, and tested in vitro and in vivo. Results The detector presented in this work stores and analyzes on-the-fly single and coincidence detected events. A sensitivity of 22.6 cps/(kBq/mL) and 1.7 cps/(kBq/mL) was obtained for single and coincidence events respectively. An energy resolution of 35% full-width-half-maximum (FWHM) at 511 keV and a minimum detectable activity of 0.30 ± 0.08 kBq/mL in single mode were obtained. The in vivo AIFs obtained with the detector show an excellent Pearson’s correlation (r = 0.996, p < 0.0001) with the ones obtained from well counter analysis of discrete blood samples. Moreover, in vitro experiments demonstrate the capability of the detector to apply the gamma spectroscopic analysis on a mixture of 68Ga and 18F and separate the individual signal emitted from each one. Conclusions Characterization and in vivo evaluation under realistic experimental conditions showed that the detector proposed in this work offers excellent sensibility and stability. The device also showed to successfully separate individual signals emitted from a mixture of radioisotopes. Therefore, the blood sample detector presented in this study allows fully automatic AIFs measurements during single- and multi-tracer PET studies.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Yasemin Ucal ◽  
Muhittin Serdar ◽  
Cansu Akın-Levi ◽  
Zeynep Zulfiye Yıldırım-Keles ◽  
Cem Turam ◽  
...  

AbstractObjectivesTrace elements are essential in thyroid functioning as they incorporate into biologically important enzymes as cofactors. The placenta can either activate or inhibit the transfer of maternal trace elements to the unborn. An imbalance of maternal trace elements in pregnancy may affect both maternal and newborn thyroid function.MethodsBlood samples from 315 lactating mothers were collected in the first 48 h after delivery and evaluated for selenium (Se), copper (Cu), manganese (Mn), and zinc (Zn) using flame atomic absorption spectroscopy (FAAS) and quadrupole inductively coupled plasma-mass spectrometer (ICP-MS). Thyroid hormones and auto-antibodies (thyroid-stimulating hormone (TSH), free T3 (fT3), free T3 (fT4), anti–thyroid peroxidase (anti-TPO), and antithyroglobulin (anti-TG)) were analyzed in maternal blood using an electro-chemiluminescence immunoassay (ECLIA). Between 48 and 72 postpartum hours, spot blood samples were used for newborn screening-TSH measurement. Correlation and multivariate analyses were performed to evaluate the effect of maternal trace element levels on newborn screening-TSH levels.ResultsThe medians (min-max) of maternal Se (45.16 µg/L (21.28–79.04)), Cu (210.10 µg/dL (117.04–390.64)), Mn (2.11 µg/L (0.20–3.46)), and Zn (0.43 mg/L (0.24–0.66)) were determined. A positive correlation was detected between Zn and maternal TSH levels (r=0.12, p < 0.05). Newborn screening-TSH was significantly correlated with maternal Cu (r=0.14, p < 0.01). Similarly, Cu exhibited weak associations in clustering analysis while others shared common clusters with newborn-screening TSH.ConclusionsThere was no significant association between most of the maternal serum trace elements and maternal thyroid hormone parameters, with an only exception between maternal Zn and maternal serum TSH. Finally, the association between maternal serum Cu levels and newborn screening-TSH levels may highlight the importance of maternal Cu levels on the newborn thyroid health.


Sign in / Sign up

Export Citation Format

Share Document