scholarly journals The value of paleoecology as an aid to monitoring ecosystems and landscapes, chiefly with reference to North America

2001 ◽  
Vol 9 (2) ◽  
pp. 99-126 ◽  
Author(s):  
Eville Gorham ◽  
Grace S Brush ◽  
Lisa J Graumlich ◽  
Michael L Rosenzweig ◽  
Arthur H Johnson

Paleoecological indicators are examined as to their accuracy in reconstructing past biotic communities and environmental conditions, their utility in answering important questions about such communities and conditions, and the temporal and spatial scales over which they are effective. Next, environmental problems susceptible of paleoecological analysis are considered, as are the ecosystem and landscape properties that can be inferred from such an analysis. The usefulness of paleoecology in anticipating ecological ``surprises'' is then discussed. Finally, a set of conclusions and recommendations is presented.Key words: ecosystem properties, environmental problems, surprise factor.

Author(s):  
Ryan M. Parish ◽  
Charles H. McNutt

Cahokia’s role in “Mississippianization”—or the rapid advent of monumental architecture; maize-based subsistence practices; a rich iconography; and social, political, and economic complexity—and its spread or adoption throughout the Midwest and Southeast is intriguing. The question of whether what we see in the archaeological record can be described as an “event” or a “process” drives research into examining cultural change and forces us to critically evaluate what exactly is Mississippian. Recent studies are first recognizing that what we call Mississippian culture is incredibly complex, from individual communities to broad regions whose localized development cannot be overshadowed. Second, researchers acknowledge that change is marked by historic figures, events, places, objects, landscapes, memories, traditions, beliefs, and people. The tangled web of change observed in the archaeological record is further obscured by the temporal and spatial scales of the data. However, creative models and collaborative research are elucidating the variability of Mississippianization from inception, spread, and adoption. The Cahokia site, its rise and fall as an early regional influencer of people both locally and abroad, is an important framework within which to study the development of place, memory, events, cultural traditions, and the last millennia of precontact North America.


2020 ◽  
pp. 1420326X1989914
Author(s):  
Zhitong Wang ◽  
Cong Liu ◽  
Qian Hua ◽  
Xiaohong Zheng ◽  
Wenjing Ji ◽  
...  

A tracer element can help distinguish between indoor PM2.5 of outdoor origin and that of indoor origin. PM2.5-associated iron has been proposed as a tracer element of PM2.5 in Beijing. This study aims to examine the effect of particulate iron on tracking indoor PM2.5 of outdoor origin in temporal and spatial scales. From July 2018 to March 2019, we collected 24 pairs of indoor and outdoor PM2.5 samples in Nanjing, China. We calculated a normalized ratio (ratio of indoor/outdoor (I/O) ratio of iron to that of PM2.5). Results show a mean ± SD of the normalized ratio of 1.0 ± 0.38. It suggests that particulate iron tracks PM2.5 well during outdoor-to-indoor transport on average. This tracking performance varies temporally. The mean ± SD of the normalized ratio is 0.79 ± 0.17 from July to December 2018 and 1.2 ± 0.41 in March. The results from studies published in different regions of the world over recent years show a mean normalized ratio of 0.88, 0.67, 1.3 and 0.8 in Asia, Europe, North America and South America, respectively, indicating the spatial heterogeneity of iron’s tracking effect. In comparison, sulphate appears to exhibit a less stable tracking effect than iron.


Larvae of many marine invertebrates must capture and ingest particulate food in order to develop to metamorphosis. These larvae use only a few physical processes to capture particles, but implement these processes using diverse morphologies and behaviors. Detailed understanding of larval feeding mechanism permits investigators to make predictions about feeding performance, including the size spectrum of particles larvae can capture and the rates at which they can capture them. In nature, larvae are immersed in complex mixtures of edible particles of varying size, density, flavor, and nutritional quality, as well as many particles that are too large to ingest. Concentrations of all of these components vary on fine temporal and spatial scales. Mechanistic models linking larval feeding mechanism to performance can be combined with data on food availability in nature and integrated into broader bioenergetics models to yield increased understanding of the biology of larvae in complex natural habitats.


The environment has always been a central concept for archaeologists and, although it has been conceived in many ways, its role in archaeological explanation has fluctuated from a mere backdrop to human action, to a primary factor in the understanding of society and social change. Archaeology also has a unique position as its base of interest places it temporally between geological and ethnographic timescales, spatially between global and local dimensions, and epistemologically between empirical studies of environmental change and more heuristic studies of cultural practice. Drawing on data from across the globe at a variety of temporal and spatial scales, this volume resituates the way in which archaeologists use and apply the concept of the environment. Each chapter critically explores the potential for archaeological data and practice to contribute to modern environmental issues, including problems of climate change and environmental degradation. Overall the volume covers four basic themes: archaeological approaches to the way in which both scientists and locals conceive of the relationship between humans and their environment, applied environmental archaeology, the archaeology of disaster, and new interdisciplinary directions.The volume will be of interest to students and established archaeologists, as well as practitioners from a range of applied disciplines.


2021 ◽  
Vol 13 (12) ◽  
pp. 2355
Author(s):  
Linglin Zeng ◽  
Yuchao Hu ◽  
Rui Wang ◽  
Xiang Zhang ◽  
Guozhang Peng ◽  
...  

Air temperature (Ta) is a required input in a wide range of applications, e.g., agriculture. Land Surface Temperature (LST) products from Moderate Resolution Imaging Spectroradiometer (MODIS) are widely used to estimate Ta. Previous studies of these products in Ta estimation, however, were generally applied in small areas and with a small number of meteorological stations. This study designed both temporal and spatial experiments to estimate 8-day and daily maximum and minimum Ta (Tmax and Tmin) on three spatial scales: climate zone, continental and global scales from 2009 to 2018, using the Random Forest (RF) method based on MODIS LST products and other auxiliary data. Factors contributing to the relation between LST and Ta were determined based on physical models and equations. Temporal and spatial experiments were defined by the rules of dividing the training and validation datasets for the RF method, in which the stations selected in the training dataset were all included or not in the validation dataset. The RF model was first trained and validated on each spatial scale, respectively. On a global scale, model accuracy with a determination coefficient (R2) > 0.96 and root mean square error (RMSE) < 1.96 °C and R2 > 0.95 and RMSE < 2.55 °C was achieved for 8-day and daily Ta estimations, respectively, in both temporal and spatial experiments. Then the model was trained and cross-validated on each spatial scale. The results showed that the data size and station distribution of the study area were the main factors influencing the model performance at different spatial scales. Finally, the spatial patterns of the model performance and variable importance were analyzed. Both daytime and nighttime LST had a significant contribution in the 8-day Tmax estimation on all the three spatial scales; while their contribution in daily Tmax estimation varied over different continents or climate zones. This study was expected to improve our understanding of Ta estimation in terms of accuracy variations and influencing variables on different spatial and temporal scales. The future work mainly includes identifying underlying mechanisms of estimation errors and the uncertainty sources of Ta estimation from a local to a global scale.


2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Guillaume Ropp ◽  
Vincent Lesur ◽  
Julien Baerenzung ◽  
Matthias Holschneider

Abstract We describe a new, original approach to the modelling of the Earth’s magnetic field. The overall objective of this study is to reliably render fast variations of the core field and its secular variation. This method combines a sequential modelling approach, a Kalman filter, and a correlation-based modelling step. Sources that most significantly contribute to the field measured at the surface of the Earth are modelled. Their separation is based on strong prior information on their spatial and temporal behaviours. We obtain a time series of model distributions which display behaviours similar to those of recent models based on more classic approaches, particularly at large temporal and spatial scales. Interesting new features and periodicities are visible in our models at smaller time and spatial scales. An important aspect of our method is to yield reliable error bars for all model parameters. These errors, however, are only as reliable as the description of the different sources and the prior information used are realistic. Finally, we used a slightly different version of our method to produce candidate models for the thirteenth edition of the International Geomagnetic Reference Field.


2020 ◽  
Vol 498 (4) ◽  
pp. 4983-5002
Author(s):  
D Wittor ◽  
M Gaspari

ABSTRACT Turbulence in the intracluster, intragroup, and circumgalactic medium plays a crucial role in the self-regulated feeding and feedback loop of central supermassive black holes. We dissect the 3D turbulent ‘weather’ in a high-resolution Eulerian simulation of active galactic nucleus (AGN) feedback, shown to be consistent with multiple multiwavelength observables of massive galaxies. We carry out post-processing simulations of Lagrangian tracers to track the evolution of enstrophy, a proxy of turbulence, and its related sinks and sources. This allows us to isolate in depth the physical processes that determine the evolution of turbulence during the recurring strong and weak AGN feedback events, which repeat self-similarly over the Gyr evolution. We find that the evolution of enstrophy/turbulence in the gaseous halo is highly dynamic and variable over small temporal and spatial scales, similar to the chaotic weather processes on Earth. We observe major correlations between the enstrophy amplification and recurrent AGN activity, especially via its kinetic power. While advective and baroclinc motions are always subdominant, stretching motions are the key sources of the amplification of enstrophy, in particular along the jet/cocoon, while rarefactions decrease it throughout the bulk of the volume. This natural self-regulation is able to preserve, as ensemble, the typically observed subsonic turbulence during cosmic time, superposed by recurrent spikes via impulsive anisotropic AGN features (wide outflows, bubbles, cocoon shocks). This study facilitates the preparation and interpretation of the thermo-kinematical observations enabled by new revolutionary X-ray integral field unit telescopes, such as XRISM and Athena.


2016 ◽  
Vol 43 (2) ◽  
pp. 172-180 ◽  
Author(s):  
ALICE B. KELLY ◽  
A. CLARE GUPTA

SUMMARYThis study considers the issue of security in the context of protected areas in Cameroon and Botswana. Though the literature on issues of security and well-being in relation to protected areas is extensive, there has been less discussion of how and in what ways these impacts and relationships can change over time, vary with space and differ across spatial scales. Looking at two very different historical trajectories, this study considers the heterogeneity of the security landscapes created by Waza and Chobe protected areas over time and space. This study finds that conservation measures that various subsets of the local population once considered to be ‘bad’ (e.g. violent, exclusionary protected area creation) may be construed as ‘good’ at different historical moments and geographical areas. Similarly, complacency or resignation to the presence of a park can be reversed by changing environmental conditions. Changes in the ways security (material and otherwise) has fluctuated within these two protected areas has implications for the long-term management and funding strategies of newly created and already existing protected areas today. This study suggests that parks must be adaptively managed not only for changing ecological conditions, but also for shifts in a protected area's social, political and economic context.


Sign in / Sign up

Export Citation Format

Share Document