scholarly journals Seasonal regulation of river discharge by the cascade reservoirs in the Lancang River and its effect on downstream freshwater and estuarine saltwater intrusion

2021 ◽  
Vol 4 (1) ◽  
pp. 233-250
Author(s):  
Jianrong Zhu ◽  
Wei Qiu ◽  
Chuanmin Tang ◽  
Xinyue Cheng

This study assesses the seasonal regulation of river discharge by hydropower dam-induced cascade reservoirs in the Lancang River and its effect on downstream freshwater and estuarine saltwater intrusion. There are eight main reservoirs in the Lancang River, with a total regulation capacity of 25.67 billion m3, which regulates river discharge by conserving water in the flood season and releasing water in the dry season. River discharge during the dry season from 1960 to 2009 accounted for 21% of the annual discharge before the cascade reservoirs were constructed and increased to 33% from 2010 to 2015 after the cascade reservoirs were constructed at the Jinghong hydrological station, which is the lowermost station in the Lancang River. During the 2016 extreme drought in the lower Mekong River basin, the river discharge increased by 550, 367, 1283, 969, and 524 m3/s in January, February, March, April, and May, respectively, regulated by the cascade reservoirs at the Jinghong hydrological station. Considering runoff, tides, wind, and continental shelf currents, a high-resolution three-dimensional numerical model was used to simulate the effect of regulation of river discharge by the cascade reservoirs in the Lancang River on the saltwater intrusion in the Mekong River Delta (MRD). The simulation results show that the seasonal regulation of river discharge by the cascade reservoirs in the Lancang River weakens estuarine saltwater intrusion during the dry season, especially in the sand bar areas, which is much more significant in the extreme dry season of 2016. The seasonal regulation of river discharge by the reservoirs in the Lancang River makes the seasonal distribution of downstream river discharge more uniform, favoring downstream freshwater utilization and alleviating flood disasters and saltwater intrusion in the MRD.

2021 ◽  
Vol 9 (11) ◽  
pp. 1291
Author(s):  
Chengcheng Hou ◽  
Jianrong Zhu ◽  
Ju Huang ◽  
Xinyue Cheng

Estuaries are areas where runoff and tide interact. Tidal waves propagate upstream from river mouths and produce tidal currents and tidal level variations along rivers. Based on the hydrological frequency analysis of river discharge in the dry season and flood season at the Datong hydrological station over the past 70 years, a three-dimensional estuary numerical model was used to produce the quantitative relationships between the tidal current limit, tidal level limit and river discharge in the Changjiang River estuary. The positions of tidal current limit and tidal level limit depend not only on river discharge but also on river topography. When river discharge varies from a hydrological frequency of 95% to 5%, the relationship between the tidal current limit and river discharge is y=2×10−13x3+3 × 10−8x2− 0.0074x+359.35 in the flood season, with a variation range of 90 km, and y=−4×10−10x3−1 × 10−5x2−0.1937x − 1232.9 in the dry season, with a variation range of 200 km. The relationship between the tidal level limit and river discharge is y=6×10−8x2−0.0096x+775.94 in the flood season, with a variation range of 127 km, and y=0.3428x2−17.9x+777.55 in the dry season, with a variation range of 83 km, which is located far upstream of the Datong hydrological station.


2021 ◽  

<p>Field investigations were conducted to study the seasonal variation of hydrodynamics and sediment transport in Indus River Estuary (IRE), Pakistan. The data of water levels, currents, salinity, and suspended sediment concentration (SSC) were collected hourly covering both wet and dry seasons. Tidal amplitudes were higher near the mouth than those at the middle and upper estuary. The ebb phase lasted longer than that of the flood during the wet season. The asymmetric tidal pattern with higher ebb velocity was observed during the wet season. A slight difference in current velocity was found during the dry season. The flood currents were higher at middle estuary than those in wet season. During the wet season, salinity variation within a tidal cycle slightly increased from the upper estuary to the mouth. Salinity was substantially higher during the dry season than the wet season at all three stations, with the absence of the flood-ebb variation, showing a strong saltwater intrusion. The SSC data revealed that the sediments were mainly brought into the estuary by freshwater discharge during the wet season. Sediment re-suspension process persists during the dry season, due to the tidal currents. A stronger saltwater intrusion occurred in the dry season due to weak river discharge. An estuarine turbidity maximum zone was formed near station-2 due to the combined effects of tides, river discharge and saltwater intrusion. Overall, field observations have shown a significant spatial and temporal variation in flood/ebb and wet/dry seasons for hydrodynamics and sediment transport in IRE.</p>


2014 ◽  
Vol 69 (6) ◽  
pp. 1334-1343 ◽  
Author(s):  
Shasha Lu ◽  
Ruijie Li ◽  
Xiaoming Xia ◽  
Jun Zheng

Measuring pollutant concentrations in major tributaries is the standard method for establishing pollutant fluxes to the sea. However, this method is costly and difficult, and may be subject to a great deal of uncertainty due to the presence of unknown sources. This uncertainty presents challenges to managers and scientists in reducing contaminant discharges to water bodies. As one less costly method, a three-dimensional model was developed and used to predict pollutant fluxes to the sea. The sorptive contaminant model was incorporated into hydrodynamic and sediment models. Adsorption–desorption of copper by sediments in the Oujiang estuary were described using Henry's law. The model was validated using measured data for water surface elevations, flow velocity/direction, suspended sediment concentrations, and the proportion of copper sorbed to sediment. The validated model was then applied to predict fluxes of copper. Combined with the measured data, the copper concentration in the Oujiang River discharge was calculated as 13.0 μg/L and copper fluxes were calculated as 52 t in 2010. This copper flux prediction was verified using measured dissolved copper concentrations. Comparisons between the modeled and measured results showed good agreement at most stations, demonstrating that copper flux prediction in the Oujiang estuary was reasonably accurate.


2013 ◽  
Vol 50 (12) ◽  
pp. 1204-1218 ◽  
Author(s):  
A.K. Leung ◽  
C.W.W. Ng

Understanding seasonal hydrogeological responses of vegetated soil slopes is vital to slope stability because pore-water pressure (PWP) varies from positive values upon rainfall in wet seasons to negative values upon plant evapotranspiration (ET) in dry seasons. There are, however, few case histories that report seasonal performance of vegetated soil slopes. In this study, a vegetated slope situated in Hong Kong was instrumented to analyse (i) groundwater flow during rainfall in the wet season and (ii) effects of plant ET on PWP in the dry season. Two- and three-dimensional anisotropic transient seepage analyses are conducted to identify groundwater flow mechanism(s) during a heavy rainstorm. Through water and energy balance calculations, measured plant-induced suction is interpreted with plant characteristic and climatic data. During the rainstorm, substantial recharge of the groundwater table was recorded, likely due to preferential water flow along relict joints and three-dimensional cross-slope groundwater flow. During the dry season, the peak suction induced by plant ET is up to 200 kPa and the depth of influence is shallower than 200% of the root depth. For the range of suctions monitored, root-water uptake is revealed to have been restricted by suction not very significantly and was driven mainly by the climatic variation.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1716 ◽  
Author(s):  
Zhuqing Wen ◽  
Xia Li ◽  
Tianhong Li

The Lancang-Mekong River significantly affects the livelihood of residents in the basin as well as the lives of people in other regions of the world in terms of great development potential and its economic and ecological values. In the meanwhile, the river attracts the attention of countries in the basin and the international community because it raises potential for international conflicts. The Lancang-Mekong River leaves China from Xishuangbanna and the ecosystem status in Xishuangbanna constitutes one of the top concerns related to the basin. The study comprehensively evaluates the status of freshwater ecosystem health of the Lancang River in Xishuangbanna for the first time, with reference to aspects of ecosystem vitality, ecosystem services, as well as governance and stakeholders, firstly, linking the ecosystem and the benefits it provides as well as human activities as an organic whole. The methodology used, Freshwater Health Index, is newly developed and constitutes revision of the first attempt of its usage. Basically, the freshwater ecosystem in the studied area and period remains healthy according to the research, and the ecosystem is considered to be capable of providing sufficient services and benefits to meet the economic and societal development demands. Recommendations are proposed for more sustainable local freshwater management and utilization accordingly.


2019 ◽  
Vol 16 (7) ◽  
pp. 1493-1503 ◽  
Author(s):  
Shaun R. Levick ◽  
Anna E. Richards ◽  
Garry D. Cook ◽  
Jon Schatz ◽  
Marcus Guderle ◽  
...  

Abstract. Fire regimes across the globe have been altered through changes in land use, land management, and climate conditions. Understanding how these modified fire regimes impact vegetation structure and dynamics is essential for informed biodiversity conservation and carbon management in savanna ecosystems. We used a fire experiment at the Territory Wildlife Park (TWP), northern Australia, to investigate the consequences of altered fire regimes for vertical habitat structure and above-ground carbon storage. We mapped vegetation three-dimensional (3-D) structure in high spatial resolution with airborne lidar across 18 replicated 1 ha plots of varying fire frequency and season treatments. We used lidar-derived canopy height and cover metrics to extrapolate field-based measures of woody biomass to the full extent of the experimental site (R2=0.82, RMSE = 7.35 t C ha−1) and analysed differences in above-ground carbon storage and canopy structure among treatments. Woody canopy cover and biomass were highest in the absence of fire (76 % and 39.8 t C ha−1) and lowest in plots burnt late in the dry season on a biennial basis (42 % and 18.2 t C ha−1). Woody canopy vertical profiles differed among all six fire treatments, with the greatest divergence in height classes <5 m. The magnitude of fire effects on vegetation structure varied along the environmental gradient underpinning the experiment, with less reduction in biomass in plots with deeper soils. Our results highlight the large extent to which fire management can shape woody structural patterns in savanna landscapes, even over time frames as short as a decade. The structural profile changes shown here, and the quantification of carbon reduction under late dry season burning, have important implications for habitat conservation, carbon sequestration, and emission reduction initiatives in the region.


Water ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 8 ◽  
Author(s):  
Ying Liu ◽  
Anming Bao ◽  
Xi Chen ◽  
Ruisen Zhong

The salinization of Bosten Lake, which is the largest lake in the arid or semi-arid region of Xinjiang, has increased. To study the effects of the inflow change of Kaidu River, the main recharge, on the salinity structure of Bosten Lake, the Estuarine, Coastal, and Ocean Modeling System with Sediments (ECOMSED), a basic three-dimensional numerical model, was used. The model is forced by realistic atmospheric forcing and river inflows, and verified by observational data. The model simulations can map the lake water movement processes and offer an understanding of the likely role of river runoff on the Bosten Lake salinity structure. The water mainly flows eastward at the surface and westward at the bottom. The river runoff of Kaidu River significantly affects the salinity structure of the southwestern part of the lake. The Kaidu River discharge mostly flowed northeastward along the west bank of the lake, so with decreasing Kaidu River discharge, the salinity of the region from the inlet of the river to its right (looking in the direction of the flow) subsequently increased. This study helps to the mastering of the dynamic change of salinity and provides some quantity information for controlling the salinization of Bosten Lake.


2020 ◽  
Author(s):  
Jonas Götte ◽  
Josefin Thorslund ◽  
Niko Wanders

&lt;p&gt;Saltwater intrusion into estuaries is a natural phenomenon which impacts freshwater availability for irrigation and human consumption. The intrusion length is dependent on the river discharge, sea level fluctuation and deltaic shape. As climate change impacts the sea level fluctuations and river discharge in many areas in the world it is expected that the intrusion length of rivers will change in the coming decades. However, global scale assessments are currently lacking, since estimates of the intrusion length are usually done for individual rivers, with complex models requiring extensive spatio-temporal data.&lt;br&gt;In this study, we provide a first global estimate of saltwater intrusion in estuaries. To do this, we first evaluate an existing predictive model for the salt water intrusion length on a local scale, before transitioning to global input data of river discharge, deltaic shapes and sea level. We assess the predictive quality of the model and its sensitivity in regard to uncertainties in (global) input data before giving an estimate of salt intrusion globally.&lt;br&gt;By using large ensemble-simulations of discharge on a global scale in a warmer climate (+2 &amp;#176;C), we further project impacts of climate change on the saltwater intrusion length and identify highly affected delta systems. The ensemble-simulations allow extreme events and respective estimations of frequency and magnitude. This is especially relevant since high salinity levels usually occur during droughts when river discharge is low and freshwater resources are diminished.&lt;/p&gt;


2012 ◽  
Vol 9 (5) ◽  
pp. 6569-6614 ◽  
Author(s):  
H. Lauri ◽  
H. de Moel ◽  
P. J. Ward ◽  
T. A. Räsänen ◽  
M. Keskinen ◽  
...  

Abstract. The transboundary Mekong River is facing two on-going changes that are estimated to significantly impact its hydrology and the characteristics of its exceptional flood pulse. The rapid economic development of the riparian countries has led to massive plans for hydropower construction, and the projected climate change is expected to alter the monsoon patterns and increase temperature in the basin. The aim of this study is to assess the cumulative impact of these factors on the hydrology of the Mekong within next 20–30 yr. We downscaled output of five General Circulation Models (GCMs) that were found to perform well in the Mekong region. For the simulation of reservoir operation, we used an optimisation approach to estimate the operation of multiple reservoirs, including both existing and planned hydropower reservoirs. For hydrological assessment, we used a distributed hydrological model, VMod, with a grid resolution of 5 km × 5 km. In terms of climate change's impact to hydrology, we found a high variation in the discharge results depending on which of the GCMs is used as input. The simulated change in discharge at Kratie (Cambodia) between the baseline (1982–1992) and projected time period (2032–2042) ranges from −11% to +15% for the wet season and −10% to +13% for the dry season. Our analysis also shows that the changes in discharge due to planned reservoir operations are clearly larger than those simulated due to climate change: 25–160% higher dry season flows and 5–24% lower flood peaks in Kratie. The projected cumulative impacts follow rather closely the reservoir operation impacts, with an envelope around them induced by the different GCMs. Our results thus indicate that within the coming 20–30 yr, the operation of planned hydropower reservoirs is likely to have a larger impact on the Mekong hydrograph than the impacts of climate change, particularly during the dry season. On the other hand, climate change will increase the uncertainty of the estimated hydropower impacts. Consequently, both dam planners and dam operators should pay better attention to the cumulative impacts of climate change and reservoir operation to the aquatic ecosystems, including the multibillion-dollar Mekong fisheries.


Sign in / Sign up

Export Citation Format

Share Document