Masterminds or minions? Cysteine proteinases in plant programmed cell deathThis review is one of a selection of papers published in the Special Issue on Plant Cell Biology.

2006 ◽  
Vol 84 (4) ◽  
pp. 651-667 ◽  
Author(s):  
Christopher P. Trobacher ◽  
Adriano Senatore ◽  
John S. Greenwood

Cysteine proteinases are ubiquitously involved in programmed cell death (PCD) in multicellular organisms. In animals, one group of cysteine proteinases, the cysteine-dependent aspartate-specific proteinases (caspases), are involved in a proteolytic signalling cascade that controls apoptosis, the most studied form of PCD. The enzymes act as both masterminds and executioners in apoptotic cell death. In plants, members of the metacaspase family, as well as those of the papain-like and legumain families, of cysteine proteinases have all been implicated in PCD. These enzymes often belong to sizeable gene families, with Arabidopsis having 9 metacaspase, 32 papain-like, and 4 legumain genes. This redundancy has made it difficult to ascertain the functional importance of any particular enzyme in plant PCD, as many are often expressed in a given tissue undergoing PCD. As yet, mechanisms similar to the apoptotic caspase cascade in animals have not been uncovered in plants and, indeed, may not exist. Are the various cysteine proteinases, so often implicated in plant PCD, merely acting as minions in the process? This review will outline reports of cysteine proteinases associated with plant PCD, discuss problems in determining the function of specific proteases, and suggest avenues for determining how these enzymes might be regulated and how PCD pathways upstream of protease expression and activation might operate.


2007 ◽  
Vol 85 (1) ◽  
pp. 89-95 ◽  
Author(s):  
Ciara M. Chamberlain ◽  
David J. Granville

The mechanism and role of apoptotic cell death in the pathogenesis of atheromatous diseases is an area of intense research. Atherosclerosis is an inflammatory disease and as such, immune-mediated cell killing plays an important role. Recent studies have suggested that Granzyme B and perforin play an important role in atherogenesis. The current manuscript reviews our current understanding pertaining to the role of Granzyme B in cardiac allograft vasculpathy and atherosclerosis.



Science ◽  
2002 ◽  
Vol 297 (5579) ◽  
pp. 200-201 ◽  
Author(s):  
A. Chiarugi


2006 ◽  
Vol 84 (4) ◽  
pp. 515-522 ◽  
Author(s):  
Preetinder K. Dhanoa ◽  
Alison M. Sinclair ◽  
Robert T. Mullen ◽  
Jaideep Mathur

The discovery and development of multicoloured fluorescent proteins has led to the exciting possibility of observing a remarkable array of subcellular structures and dynamics in living cells. This minireview highlights a number of the more common fluorescent protein probes in plants and is a testimonial to the fact that the plant cell has not lagged behind during the live-imaging revolution and is ready for even more in-depth exploration.



2020 ◽  
Vol 295 (10) ◽  
pp. 3228-3238 ◽  
Author(s):  
Joseph K. Rathkey ◽  
Tsan S. Xiao ◽  
Derek W. Abbott

Exomic studies have demonstrated that innate immune genes exhibit an even higher degree of variation than the majority of other gene families. However, the phenotypic implications of this genetic variation are not well understood, with effects ranging from hypomorphic to silent to hyperfunctioning. In this work, we study the functional consequences of this variation by investigating polymorphisms in gasdermin D, the key pyroptotic effector protein. We find that, although SNPs affecting potential posttranslational modifications did not affect gasdermin D function or pyroptosis, polymorphisms disrupting sites predicted to be structurally important dramatically alter gasdermin D function. The manner in which these polymorphisms alter function varies from conserving normal pyroptotic function to inhibiting caspase cleavage to disrupting oligomerization and pore formation. Further, downstream of inflammasome activation, polymorphisms that cause loss of gasdermin D function convert inflammatory pyroptotic cell death into immunologically silent apoptotic cell death. These findings suggest that human genetic variation can alter mechanisms of cell death in inflammation.



2006 ◽  
Vol 84 (4) ◽  
pp. 523-530 ◽  
Author(s):  
Sally L. Hanton ◽  
Federica Brandizzi

The study of the plant secretory pathway is a relatively new field, developing rapidly over the last 30 years. Many exciting discoveries have already been made in this area, but as old questions are answered new ones become apparent. Our understanding of the functions and mechanisms of the plant secretory pathway is constantly expanding, in part because of the development of new technologies, mainly in bioimaging. The increasing accessibility of these new tools in combination with more established methods provides an ideal way to increase knowledge of the secretory pathway in plants. In this review we discuss recent developments in understanding protein transport between organelles in the plant secretory pathway.



2006 ◽  
Vol 84 (4) ◽  
pp. 531-542 ◽  
Author(s):  
Matthew D. Smith

Chloroplasts are but one type of a diverse group of essential organelles that distinguish plant cells and house many critical biochemical pathways, including photosynthesis. The biogenesis of plastids is essential to plant growth and development and relies on the targeting and import of thousands of nuclear-encoded proteins from the cytoplasm. The import of the vast majority of these proteins is dependent on translocons located in the outer and inner envelope membranes of the chloroplast, termed the Toc and Tic complexes, respectively. The core components of the Toc and Tic complexes have been identified within the last 12 years; however, the precise functions of many components are still being elucidated, and new components are still being identified. In Arabidopsis thaliana (and other species), many of the components are encoded by more than one gene, and it appears that the isoforms differentially associate with structurally distinct import complexes. Furthermore, it appears that these complexes represent functionally distinct targeting pathways, and the regulation of import by these separate pathways may play a role in the differentiation and specific functions of distinct plastid types during plant growth and development. This review summarizes these recent discoveries and emphasizes the mechanisms of differential Toc complex assembly and substrate recognition.



2021 ◽  
Vol 4 (2) ◽  
pp. 18-26
Author(s):  
M. M. Zhelavskyi ◽  
S. P. Kernychnyi ◽  
O. Ya. Dmytriv

Since the middle of the last century, scientists have been interested in the mechanisms of regulation of cell division, differentiation and aging of cells. The first objects of study were insects, helminths and other living organisms. From the very beginning, in the biology of cell development and regulation, scientists have attached leading importance to genetic factors. Later, more and more experience was gained on the influence of intracellular factors, metabolic changes and exogenous pathogens on the programmed cell death. Recent research on cell biology and pathology has focused on the study of apoptosis. The first described phenomenon of programmed cell death was apoptosis. Subsequent studies were aimed at the study programmed cell death. This review will provide an opportunity to consider the biological mechanisms of programmed cell death, differences and species characteristics. The author described the clinical aspects of apoptosis, necroptosis and pyroptosis and their importance in the formation of cellular homeostasis. In the present review article simple classification system, where the cell death entities are primarily categorized into programmed cell death. Multiple mechanisms and phenotypes compose programmed non-apoptotic cell death, including: autophagy, entosis, methuosis and paraptosis, mitoptosis and parthanatos, ferroptosis, pyroptosis NETosis and necroptosis. Changes of cellular regulation at development of pathologies at people and animals are considered. Cell biology includes a variety of mechanisms of programmed aging and death. Modern research is aimed at deepening the study multiple mechanisms and phenotypes compose programmed. Cells. will certainly be taken into account by the Nomenclature Committee on Cell Death. Cellular regulation is associated with a variety of physiological mechanisms of development, and is also important in processes such as inflammation, immune response, embryogenesis maintenance of tissue homeostasis. Study of factors of influence and mechanisms of regulation of aging of cells opens a curtain for development of the newest means of diagnostics of pathologies and development of pharmacological means for correction of cellular mechanisms at development of pathologies.



2003 ◽  
Vol 39 ◽  
pp. 105-117 ◽  
Author(s):  
Aimee M deCathelineau ◽  
Peter M Henson

As cells undergo apoptosis, they are recognized and removed from the body by phagocytes. This oft-overlooked yet critical final step in the cell-death programme protects tissues from exposure to the toxic contents of dying cells and also serves to prevent further tissue damage by stimulating production of anti-inflammatory cytokines and chemokines. The clearance of apoptotic-cell corpses occurs throughout the lifespan of multicellular organisms and is important for normal development during embryogenesis, the maintenance of normal tissue integrity and function, and the resolution of inflammation. Many of the signal-transduction molecules implicated in the phagocytosis of apoptotic cells appear to have a high degree of evolutionary conservation, and therefore the engulfment of apoptotic cells is likely to represent one of the most primitive forms of phagocytosis. With the realization that the signals that govern apoptotic-cell removal also serve to attenuate inflammation and the immune response, as well as initiate signals for tissue repair and remodelling in response to cell death, the study of apoptotic cell clearance is a field experiencing a dynamic increase in interest and momentum.



Hepatology ◽  
2022 ◽  
Author(s):  
Subreen A. Khatib ◽  
Lichun Ma ◽  
Hien Dang ◽  
Marshonna Forgues ◽  
Joon‐Yoon Chung ◽  
...  


2006 ◽  
Vol 84 (4) ◽  
pp. 581-593 ◽  
Author(s):  
Anja Geitmann

Biomechanical studies aim at understanding the relationship between the mechanical properties of biological structures and their function. In cytomechanical investigations, this approach is brought down to the scale of cells and subcellular structures. In plant cells and the hyphae of fungi and water molds, interactions between turgor pressure, the cell wall, and the cytoskeleton are considered of primary importance. This review is an overview of how the mechanical properties of these individual features and their interactions have been measured and how the experimental data are used to produce theoretical mechanical models of cellular architecture and dynamics. Several models are discussed, and focusing on the example of tip-growing cells, various approaches to understanding the mechanical aspects of cellular morphogenesis are analyzed.



Sign in / Sign up

Export Citation Format

Share Document