Plant and fungal cytomechanics: quantifying and modeling cellular architectureThis review is one of a selection of papers published in the Special Issue on Plant Cell Biology.

2006 ◽  
Vol 84 (4) ◽  
pp. 581-593 ◽  
Author(s):  
Anja Geitmann

Biomechanical studies aim at understanding the relationship between the mechanical properties of biological structures and their function. In cytomechanical investigations, this approach is brought down to the scale of cells and subcellular structures. In plant cells and the hyphae of fungi and water molds, interactions between turgor pressure, the cell wall, and the cytoskeleton are considered of primary importance. This review is an overview of how the mechanical properties of these individual features and their interactions have been measured and how the experimental data are used to produce theoretical mechanical models of cellular architecture and dynamics. Several models are discussed, and focusing on the example of tip-growing cells, various approaches to understanding the mechanical aspects of cellular morphogenesis are analyzed.

2006 ◽  
Vol 84 (4) ◽  
pp. 515-522 ◽  
Author(s):  
Preetinder K. Dhanoa ◽  
Alison M. Sinclair ◽  
Robert T. Mullen ◽  
Jaideep Mathur

The discovery and development of multicoloured fluorescent proteins has led to the exciting possibility of observing a remarkable array of subcellular structures and dynamics in living cells. This minireview highlights a number of the more common fluorescent protein probes in plants and is a testimonial to the fact that the plant cell has not lagged behind during the live-imaging revolution and is ready for even more in-depth exploration.


2006 ◽  
Vol 84 (4) ◽  
pp. 651-667 ◽  
Author(s):  
Christopher P. Trobacher ◽  
Adriano Senatore ◽  
John S. Greenwood

Cysteine proteinases are ubiquitously involved in programmed cell death (PCD) in multicellular organisms. In animals, one group of cysteine proteinases, the cysteine-dependent aspartate-specific proteinases (caspases), are involved in a proteolytic signalling cascade that controls apoptosis, the most studied form of PCD. The enzymes act as both masterminds and executioners in apoptotic cell death. In plants, members of the metacaspase family, as well as those of the papain-like and legumain families, of cysteine proteinases have all been implicated in PCD. These enzymes often belong to sizeable gene families, with Arabidopsis having 9 metacaspase, 32 papain-like, and 4 legumain genes. This redundancy has made it difficult to ascertain the functional importance of any particular enzyme in plant PCD, as many are often expressed in a given tissue undergoing PCD. As yet, mechanisms similar to the apoptotic caspase cascade in animals have not been uncovered in plants and, indeed, may not exist. Are the various cysteine proteinases, so often implicated in plant PCD, merely acting as minions in the process? This review will outline reports of cysteine proteinases associated with plant PCD, discuss problems in determining the function of specific proteases, and suggest avenues for determining how these enzymes might be regulated and how PCD pathways upstream of protease expression and activation might operate.


2006 ◽  
Vol 84 (4) ◽  
pp. 523-530 ◽  
Author(s):  
Sally L. Hanton ◽  
Federica Brandizzi

The study of the plant secretory pathway is a relatively new field, developing rapidly over the last 30 years. Many exciting discoveries have already been made in this area, but as old questions are answered new ones become apparent. Our understanding of the functions and mechanisms of the plant secretory pathway is constantly expanding, in part because of the development of new technologies, mainly in bioimaging. The increasing accessibility of these new tools in combination with more established methods provides an ideal way to increase knowledge of the secretory pathway in plants. In this review we discuss recent developments in understanding protein transport between organelles in the plant secretory pathway.


2006 ◽  
Vol 84 (4) ◽  
pp. 531-542 ◽  
Author(s):  
Matthew D. Smith

Chloroplasts are but one type of a diverse group of essential organelles that distinguish plant cells and house many critical biochemical pathways, including photosynthesis. The biogenesis of plastids is essential to plant growth and development and relies on the targeting and import of thousands of nuclear-encoded proteins from the cytoplasm. The import of the vast majority of these proteins is dependent on translocons located in the outer and inner envelope membranes of the chloroplast, termed the Toc and Tic complexes, respectively. The core components of the Toc and Tic complexes have been identified within the last 12 years; however, the precise functions of many components are still being elucidated, and new components are still being identified. In Arabidopsis thaliana (and other species), many of the components are encoded by more than one gene, and it appears that the isoforms differentially associate with structurally distinct import complexes. Furthermore, it appears that these complexes represent functionally distinct targeting pathways, and the regulation of import by these separate pathways may play a role in the differentiation and specific functions of distinct plastid types during plant growth and development. This review summarizes these recent discoveries and emphasizes the mechanisms of differential Toc complex assembly and substrate recognition.


1992 ◽  
Vol 62 (3) ◽  
pp. 135-139 ◽  
Author(s):  
Kazuhiko Fukatsu

Basic studies define the relationship between dyeability for cationic dyes and mechanical properties of chemically modified cotton fabric. Introduction of benzoyl and sulfonic acid groups provides either satisfactory dyeability for cationic dyes or color-fastness, and mechanical properties are reported as a function of the benzoate degree of substitution value. The general trend is toward increased breaking load and bending stiffness and decreased wrinkle recovery for the chemically modified fabrics, but within this trend there is latitude for selection of the degree of substituent groups to provide superior performance.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1794
Author(s):  
José Pérez-Rigueiro ◽  
Manuel Elices ◽  
Gustavo R. Plaza ◽  
Gustavo V. Guinea

The prominence of spider silk as a hallmark in biomimetics relies not only on its unrivalled mechanical properties, but also on how these properties are the result of a set of original design principles. In this sense, the study of spider silk summarizes most of the main topics relevant to the field and, consequently, offers a nice example on how these topics could be considered in other biomimetic systems. This review is intended to present a selection of some of the essential design principles that underlie the singular microstructure of major ampullate gland silk, as well as to show how the interplay between them leads to the outstanding tensile behavior of spider silk. Following this rationale, the mechanical behavior of the material is analyzed in detail and connected with its main microstructural features, specifically with those derived from the semicrystalline organization of the fibers. Establishing the relationship between mechanical properties and microstructure in spider silk not only offers a vivid image of the paths explored by nature in the search for high performance materials, but is also a valuable guide for the development of new artificial fibers inspired in their natural counterparts.


2017 ◽  
Vol 903 ◽  
pp. 17-23 ◽  
Author(s):  
Álvaro Rodríguez-Prieto ◽  
Ana Maria Camacho ◽  
Miguel Ángel Sebastián

Materials technology is a matter of great applicative and crosscutting interest, as evidenced by their presence in most curriculums of the current industrial engineering degrees. During the development of this matter, it is crucial that the student assimilates not only the relationship among composition, processing and mechanical properties, but also, how all these technological features interact facing the in-service behavior of the material. That is why, within a Doctoral dissertation developed at the Department of Construction and Manufacturing Engineering at the National Distance Education University (UNED), it has designed a computer tool to quantify the stringency level of technological requirements of materials (especially suitable for high demanding applications), characterized by its suitability as interactive teaching material used in the teaching of materials engineering. As a case study, we have chosen a selection of materials for nuclear reactor pressure vessels, because it is a very representative example of the relationship between chemical composition, mechanical properties and in-service behavior.


Biosensors ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 136
Author(s):  
Zongxing Chen ◽  
Tiean Zhou ◽  
Jiajin Hu ◽  
Haifeng Duan

The plant cell mechanics, including turgor pressure and wall mechanical properties, not only determine the growth of plant cells, but also reflect the functional and structural changes of plant cells under biotic and abiotic stresses. However, there are currently no appropriate techniques allowing to monitor the complex mechanical properties of living plant cells non-invasively and continuously. In this work, quartz crystal microbalance with dissipation (QCM-D) monitoring technique with overtones (3–9) was used for the dynamic monitoring of adhesions of living tobacco BY-2 cells onto positively charged N,N-dimethyl-N-propenyl-2-propen-1-aminiumchloride homopolymer (PDADMAC)/SiO2 QCM crystals under different concentrations of mannitol (CM) and the subsequent effects of osmotic stresses. The cell viscoelastic index (CVIn) (CVIn = ΔD⋅n/ΔF) was used to characterize the viscoelastic properties of BY-2 cells under different osmotic conditions. Our results indicated that lower overtones of QCM could detect both the cell wall and cytoskeleton structures allowing the detection of plasmolysis phenomena; whereas higher overtones could only detect the cell wall’s mechanical properties. The QCM results were further discussed with the morphological changes of the BY-2 cells by an optical microscopy. The dynamic changes of cell’s generated forces or cellular structures of plant cells caused by external stimuli (or stresses) can be traced by non-destructive and dynamic monitoring of cells’ viscoelasticity, which provides a new way for the characterization and study of plant cells. QCM-D could map viscoelastic properties of different cellular structures in living cells and could be used as a new tool to test the mechanical properties of plant cells.


Sign in / Sign up

Export Citation Format

Share Document