Leader growth and the architecture of three North American hemlocks

1981 ◽  
Vol 59 (4) ◽  
pp. 476-480 ◽  
Author(s):  
David E. Hibbs

Height growth in hemlock (Tsuga canadensis (L.) Carr., T. heterophylla (Raf.) Sarg., T. mertensiana (Bong.) Carr.) is by rhythmic growth of a monopodial axis with continuous branch production throughout the growing season. Leader growth is plagiotropic and leader erection is a process lasting several years. Two types of events disrupt the basically monopodial nature of the axis. (1) Frequent (43%) apical meristem death shifts dominance to a nearby lateral branch in T. canadensis. (2) Weak apical control allows occasional shifts in dominance from the leader to a branch without meristem death (13 and 24% in T. heterophylla and T. canadensis, respectively, but none in T. mertensiana). These growth patterns contain elements of several tree architectural models but fit none well.

Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1015
Author(s):  
Xuan Wu ◽  
Liang Jiao ◽  
Dashi Du ◽  
Changliang Qi ◽  
Ruhong Xue

It is important to explore the responses of radial tree growth in different regions to understand growth patterns and to enhance forest management and protection with climate change. We constructed tree ring width chronologies of Picea crassifolia from different regions of the Qilian Mountains of northwest China. We used Pearson correlation and moving correlation to analyze the main climate factors limiting radial growth of trees and the temporal stability of the growth–climate relationship, while spatial correlation is the result of further testing the first two terms in space. The conclusions were as follows: (1) Radial growth had different trends, showing an increasing followed by a decreasing trend in the central region, a continuously increasing trend in the eastern region, and a gradually decreasing trend in the isolated mountain. (2) Radial tree growth in the central region and isolated mountains was constrained by drought stress, and tree growth in the central region was significantly negatively correlated with growing season temperature. Isolated mountains showed a significant negative correlation with mean minimum of growing season and a significant positive correlation with total precipitation. (3) Temporal dynamic responses of radial growth in the central region to the temperatures and SPEI (the standardized precipitation evapotranspiration index) in the growing season were unstable, the isolated mountains to total precipitation was unstable, and that to SPEI was stable. The results of this study suggest that scientific management and maintenance plans of the forest ecosystem should be developed according to the response and growth patterns of the Qinghai spruce to climate change in different regions of the Qilian Mountains.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Juan Guerra-Hernández ◽  
Adrián Pascual

Abstract Background The NASA’s Global Ecosystem Dynamics Investigation (GEDI) satellite mission aims at scanning forest ecosystems on a multi-temporal short-rotation basis. The GEDI data can validate and update statistics from nationwide airborne laser scanning (ALS). We present a case in the Northwest of Spain using GEDI statistics and nationwide ALS surveys to estimate forest dynamics in three fast-growing forest ecosystems comprising 211,346 ha. The objectives were: i) to analyze the potential of GEDI to detect disturbances, ii) to investigate uncertainty source regarding non-positive height increments from the 2015–2017 ALS data to the 2019 GEDI laser shots and iii) to estimate height growth using polygons from the Forest Map of Spain (FMS). A set of 258 National Forest Inventory plots were used to validate the observed height dynamics. Results The spatio-temporal assessment from ALS surveying to GEDI scanning allowed the large-scale detection of harvests. The mean annual height growths were 0.79 (SD = 0.63), 0.60 (SD = 0.42) and 0.94 (SD = 0.75) m for Pinus pinaster, Pinus radiata and Eucalyptus spp., respectively. The median annual values from the ALS-GEDI positive increments were close to NFI-based growth values computed for Pinus pinaster and Pinus radiata, respectively. The effect of edge border, spatial co-registration of GEDI shots and the influence of forest cover in the observed dynamics were important factors to considering when processing ALS data and GEDI shots. Discussion The use of GEDI laser data provides valuable insights for forest industry operations especially when accounting for fast changes. However, errors derived from positioning, ground finder and canopy structure can introduce uncertainty to understand the detected growth patterns as documented in this study. The analysis of forest growth using ALS and GEDI would benefit from the generalization of common rules and data processing schemes as the GEDI mission is increasingly being utilized in the forest remote sensing community.


1992 ◽  
Vol 22 (5) ◽  
pp. 690-698 ◽  
Author(s):  
Stephen W. Hallgren ◽  
John A. Helms

Morphogenesis of the terminal shoot was studied in 2-year-old seedlings of California red fir (Abiesmagnifica A. Murr.) and two elevational sources of white fir (Abiesconcolor (Gord. & Glend.) Lindl.). Seedlings were either watered or left unwatered during the growing season in order to produce different shoot morphologies and seedlings with and without a summer shoot. Under favorable soil moisture, the frequency of summer shoot production was 32, 53, and 82% for red fir and high- and low-elevation white fir, respectively. Drought from mid-May to mid-September reduced summer shoot production to less than 1% in both species. Spring shoot morphology was not an indicator of capacity to produce a summer shoot. Rate of primordium production was directly related to apical dome diameter. However, when the normal spring increase in apical dome diameter was arrested by summer shoot elongation, the rate of primordium production appeared to be unaffected. Although the apical and subapical meristems were active at the same time, they did not appear to be antagonistic. The major effects of producing a summer shoot were as follows: (i) elongation of 60–120% more intemodes in the current growing season, (ii) production of 15–40% more needle primordia in the overwintering bud, (iii) production of 30–60% more primordia annually, and (iv) increase in the percentage of total primordium production that developed into needles from 60% to 75–80%.


2020 ◽  
Vol 50 (7) ◽  
pp. 624-635
Author(s):  
Patrick J. Curtin ◽  
Benjamin O. Knapp ◽  
Steven B. Jack ◽  
Lance A. Vickers ◽  
David R. Larsen ◽  
...  

Recent interest in continuous cover forest management of longleaf pine (Pinus palustris Mill.) ecosystems raises questions of long-term sustainability because of uncertainty in rates of canopy recruitment of longleaf pine trees. We destructively sampled 130 naturally regenerated, midstory longleaf pines across an 11 300 ha, second-growth longleaf pine landscape in southwestern Georgia, United States, to reconstruct individual tree height growth patterns. We tested effects of stand density (using a competition index) and site quality (based on two site classifications: mesic and xeric) on height growth and demographics of midstory trees. We also compared height growth of paired midstory and overstory trees to infer stand regeneration and recruitment dynamics. In low-density stands, midstory trees were younger and grew at greater rates than trees within high-density stands. Midstory trees in low-density stands were mostly from a younger regeneration cohort than their paired overstory trees, whereas midstory–overstory pairs in high-density stands were mostly of the same cohort. Our results highlight the importance of releasing midstory longleaf pine trees from local competition for sustained height growth in partial-harvesting management systems. They also demonstrate patterns of long-term persistence in high-density stands, indicating flexibility in the canopy recruitment process of this shade-intolerant tree species.


1981 ◽  
Vol 5 (2) ◽  
pp. 65-67 ◽  
Author(s):  
S. E. Duba ◽  
J. F. Goggans ◽  
K. E. Clausen ◽  
R. M. Patterson

Abstract A provenance test of white ash (Fraxinus americana L.) seedlings was established during January 1976 in the Tuskegee National Forest in Alabama. The seedlings were representative of the southern portion of the species' range. At the end of the third growing season, family survival ranged from 84 to 100 percent. Overall survival averaged 97 percent. Provenances and families within provenances differed in height after two and three years in the field. The family component of variation is increasing in proportion with age. The southernmost origins of East Baton Rouge, Louisiana (3.26 m) and Hardin, Texas (2.98 m) had the tallest average heights. The East Baton Rouge and Hardin sources are assumed to be tetraploid (2N = 92). There seems to be both a north-south relationship and a ploidy-level relationship to the height-growth pattern. Seedlings from the southernmost sources should perform satisfactorily in south and central Alabama.


1990 ◽  
Vol 14 (2) ◽  
pp. 73-76 ◽  
Author(s):  
Mary L. Duryea

Abstract Top pruning, growing-season fertilization, and fall fertilization were investigated in a Florida nursery to determine the effects on crop yield, morphology, nutrition, and field performance. Top pruning improved crop yield by reducing the number of cull seedlings. Top-pruned seedlings were smaller in diameter, height, and weight and had an increased number of multiple tops. In the field, top-pruned seedlings had the same survival and height growth, and after 3 years the percentage with multiple tops was the same as nonpruned seedlings. From these results, top pruning seems to be a nondetrimental practice for controlling height and producing a uniform crop in the nursery. Reducing growing-season fertilization slightly decreased shoot height, but not as much as top pruning. Also, these seedlings had reduced foliar nitrogen (N) concentration and content and grew less after 1 year in the field indicating that cutting back on N in the nursery may not be a beneficial way to control height. Fall fertilization in the nursery increased N in seedlings but did not affect growth or survival in the field. South. J. Appl. For. 14(2):73-76.


1973 ◽  
Vol 3 (4) ◽  
pp. 589-593 ◽  
Author(s):  
D. F. W. Pollard

Rates of needle initiation in lateral branch terminal buds averaged about six primordia per day between mid-May and mid-September in 10 provenances of white spruce. Variation among the provenances was not apparent until late September; a correlation then emerged between accumulated primordia and height growth. The correlation became increasingly strong in October. Slower growing provenances did not increase their primordia after early September.


2004 ◽  
Vol 19 (3) ◽  
pp. 154-159 ◽  
Author(s):  
G. Geoff Wang ◽  
Shongming Huang ◽  
David J. Morgan

Abstract Based on the provincial stem analysis and permanent sample plot (PSP) data of 1,580 felled dominant and codominant trees, height growth patterns of lodgepole pine were compared among the three major natural subregions [Sub-Alpine (SAL), Upper Foothills (UFH), and Lower Foothills (LFH)] in Alberta. The comparison used the ratio of heights at 70 and 30 years of breast height age (Z ratio) as a quantitative measure of height growth pattern (i.e., the response variable), site index (height at breast height age of 50 years) as the covariate, and natural subregion as the factor. Results indicated that: (1) the height growth pattern in the SAL natural subregion was significantly different from other natural subregions; and (2) no significant differences in height growth pattern were found between other natural subregions. Two polymorphic height and site index curves were developed: one for the SAL natural subregion and the other for the UFH and LFH natural subregions. Comparisons between the two curves and the previously developed provincial curve indicated that, for the same site index, trees in the SAL subregion grow consistently slower after 50 years. When the provincial height and site index curve was applied to the SAL natural subregion, large differences (≤14%) in gross volume estimation were found. However, volume estimation differences were very small (<2%) when the provincial curve was applied to the other two natural subregions. It is recommended that the natural subregion-based curves should be used for predicting lodgepole pine site index or height at any age in the SAL natural subregion. West. J. Appl. For. 19(3):154–159.


1989 ◽  
Vol 4 (4) ◽  
pp. 136-142 ◽  
Author(s):  
Joseph E. Means ◽  
Thomas E. Sabin

Abstract On the Siuslaw National Forest in the central Oregon Coast Range we performed stem analysis of 55 trees selected with the criteria used by the forest. Height growth patterns of these trees were significantly different (α = 0.05) from commonly used regional height growth curves. Height growth patterns also differed significantly among groups of floristically similar plant associations in the Siuslaw National Forest. We constructed height growth and site index curves for two classes of plant associations having different height growth curve forms and for the combined data. Forest managers should consider building local height-growth and site-index curves if these are important in estimating stand yield or site productivity. West. J. Appl. For. 4(4):136-142, October 1989


2001 ◽  
Vol 77 (1) ◽  
pp. 141-150 ◽  
Author(s):  
Willard H. Carmean ◽  
G. Hazenberg ◽  
G. P. Niznowski

Stem-analysis data from dominant and codominant trees were collected from 383 plots located in fully stocked, even-aged, undisturbed mature jack pine stands. Separate site index curves were independently formulated for four regions of northern Ontario using the Newnham constrained nonlinear regression model; these formulations were used for comparing regional site index curves at three levels of site index (10 m, 15 m and 20 m).Comparisons showed that no significant differences existed between the four regional curves as well as with previously published site index curves for the North Central Region. Each of the four regions had similar polymorphic height-growth patterns; therefore, data for the four regions were combined and a single formulation was used to develop a polymorphic set of site index curves for all of northern Ontario. We found that poor sites in each region had almost linear height growth up to 100 years breast-height age, but for each region height growth became more curvilinear with increasing site index. The recommended site index curves for northern Ontario are based on a formulation using only data from plots 100 years and less but this formulation was not significantly different from a formulation using only data from plots 80 years and less, or a formulation that included all data from plots older than 100 years breast-height age.Comparisons were made between our northern Ontario curves and other jack pine site index curves for Ontario as well as curves for other areas of Canada and the United States. These comparisons generally showed considerable older age differences. Reasons for these differences are uncertain but could be due to differences in the amount and kind of data used for these other curves, could be due to differences in analytical methods, or could be due to regional differences in climate, soil and topography. Key words: site quality evaluation, polymorphic height growth, regional site index curves, site index prediction equations, comparisons among site index curves.


Sign in / Sign up

Export Citation Format

Share Document