Nitrogen uptake and growth in vitro by Hebeloma crustuliniforme and other Pacific Northwest mycorrhizal fungi

1984 ◽  
Vol 62 (4) ◽  
pp. 647-652 ◽  
Author(s):  
Willis R. Littke ◽  
Caroline S. Bledsoe ◽  
Robert L. Edmonds

Since little is known about the nitrogen (N) physiology of ectomycorrhizal fungi, this study was initiated to study both radial and biomass growth and N uptake of Hebeloma crustuliniforme and other Pacific Northwest ectomycorrhizal fungi. Hebeloma crustuliniforme utilized either nitrate or ammonium as the N source in buffered liquid media, but biomass growth was greatest with ammonium. Without buffers, biomass growth on ammonium-based media was reduced, apparently owing to low pH. These results emphasize the strong interrelationship between N source and pH of the media. A pronounced pH optimum for biomass growth of H. crustuliniforme occurred at pH 5.0. Ammonium uptake rates were five to nine times greater than nitrate uptake rates over a range of N concentrations (40–600 μM). Radial growth rates of a range of mycorrhizal fungi were greater on high-N than on low-N media. For those few species that grew faster on low-N medium, their growth habit was more diffuse and dry weight production was decreased, indicating that radial growth had occurred at the expense of biomass production.

2017 ◽  
Author(s):  
Hongxing He ◽  
Astrid Meyer ◽  
Per-Erik Jansson ◽  
Magnus Svensson ◽  
Tobias Rütting ◽  
...  

Abstract. Ectomycorrhizal fungi (ECM), the symbiosis between a host plant and mycorrhizal fungi, has been shown to considerably influence the C and N flux between soil, the rhizosphere and plant in boreal forest ecosystems. However, ECM is either neglected or presented as an implicit, non-dynamic term in most ecosystem models which can potentially reduce their predictive power. In order to investigate the necessity of an explicit consideration of ECM in ecosystem models, we implemented the previous developed MYCOFON model into a detail process-based soil-plant-atmosphere model, CoupModel. MYCOFON explicitly describes the C and N fluxes between ECM and roots. This new Coup-Mycofon model approach (ECM explicit) is compared to two simpler model approaches, of which one contains ECM implicitly as an non-dynamic N uptake function (ECM implicit) and the other represents a version where plant growth has a constant N availability (nonlim). Parameter uncertainties are quantified by using Bayesian calibration where the model outputs are constrained to current forest growth and soil conditions for four forest sites along a climate and N deposition gradient in Sweden over 100 year period. Our results show that the nonlim approach could not describe both the forest growth and soil C and N conditions properly. The ECM implicit/explicit approach is able to describe current conditions with acceptable uncertainty. The ECM explicit Coup-Mycofon model provide a more detailed description of internal ecosystems fluxes and feedbacks of C and N fluxes between plant, soil and ECM. Our modelling highlights the need of incorporating ECM in current ecosystem models. We also provide a key set of posterior fungal parameters which can be further investigated and evaluated in future ECM studies.


2014 ◽  
Vol 80 (19) ◽  
pp. 6013-6022 ◽  
Author(s):  
Tara L. Connelly ◽  
Steven E. Baer ◽  
Joshua T. Cooper ◽  
Deborah A. Bronk ◽  
Boris Wawrik

ABSTRACTHow Arctic climate change might translate into alterations of biogeochemical cycles of carbon (C) and nitrogen (N) with respect to inorganic and organic N utilization is not well understood. This study combined15N uptake rate measurements for ammonium, nitrate, and urea with15N- and13C-based DNA stable-isotope probing (SIP). The objective was to identify active bacterial and archeal plankton and their role in N and C uptake during the Arctic summer and winter seasons. We hypothesized that bacteria and archaea would successfully compete for nitrate and urea during the Arctic winter but not during the summer, when phytoplankton dominate the uptake of these nitrogen sources. Samples were collected at a coastal station near Barrow, AK, during August and January. During both seasons, ammonium uptake rates were greater than those for nitrate or urea, and nitrate uptake rates remained lower than those for ammonium or urea. SIP experiments indicated a strong seasonal shift of bacterial and archaeal N utilization from ammonium during the summer to urea during the winter but did not support a similar seasonal pattern of nitrate utilization. Analysis of 16S rRNA gene sequences obtained from each SIP fraction implicated marine group ICrenarchaeota(MGIC) as well asBetaproteobacteria,Firmicutes, SAR11, and SAR324 in N uptake from urea during the winter. Similarly,13C SIP data suggested dark carbon fixation for MGIC, as well as for several proteobacterial lineages and theFirmicutes. These data are consistent with urea-fueled nitrification by polar archaea and bacteria, which may be advantageous under dark conditions.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 492f-492
Author(s):  
F.J.A. Niederholzer ◽  
S.A. Weinbaum

The relationship between nitrogen (N) status and N uptake capacity has not been assessed in fruit trees. Determination of root uptake capacity by depletion of unlabeled N from external solution is less costly than methods using 15N, but is reportedly not suited for excised root studies due to reductions in uptake rates with time (Pearcy, R.W. et al. (eds). 1989. Plant Physiological Ecology, p. 195. Chapman and Hall. New York.). We tested two hypotheses: I) excised peach root NH4+ uptake rates are constant over several hours exposure to NH4+ solution and 2) excised peach root NH4+ uptake rates are negatively correlated with tree N status. Mature, N deficient, field grown `O'Henry' trees on `Lovell' peach (Prunus persica L. Batch.) rootstocks and growing in Winters, CA received (NH4)2SO4 at a rate of 200 kg N/ha on September 29, 1993. An equal number of control trees received no N fertilizer. Foliar N deficiency symptoms of fertilized trees disappeared within 3 weeks of fertilization. On Nov. 9, 1993 (prior to leaf fall), excised roots were obtained from two fertilized and two unfertilized trees. Root NH4+ accumulation rates per unit root dry weight or root length were constant over 5 hours of exposure to 70 μM NH4+ (initial concentration) for both fertilized and unfertilized trees. Unfertilized tree root NH4+ uptake rates were significantly greater than those of fertilized trees on a root dry weight or length basis. Excised root NH4+ uptake may prove to be a sensitive index of fruit tree N status.


2021 ◽  
Author(s):  
Robert Reuter ◽  
Olga Ferlian ◽  
Mika Tarkka ◽  
Nico Eisenhauer ◽  
Karin Pritsch ◽  
...  

Abstract Mycorrhizal fungi play an important role for the nitrogen (N) supply of trees. The influence of different mycorrhizal types on N acquisition in tree-tree interactions is, however, not well understood, particularly with regard to the competition for growth-limiting N. We studied the effect of competition between temperate forest tree species on their inorganic and organic N acquisition in relation to their mycorrhizal type (i.e., arbuscular mycorrhiza or ectomycorrhiza). In a field experiment, we quantified net N uptake capacity from inorganic and organic N sources using 15N/13C stable isotopes for arbuscular mycorrhizal tree species (i.e., Acer pseudoplatanus L., Fraxinus excelsior L., and Prunus avium L.) as well as ectomycorrhizal tree species (i.e., Carpinus betulus L., Fagus sylvatica L., and Tilia platyphyllos Scop.). All species were grown in intra- and interspecific competition (i.e., monoculture or mixture). Our results showed that N sources were not used complementarily depending on a species´ mycorrhizal association, but their uptake rather depended on the competitor indicating species-specific effects. Generally, ammonium was preferred over glutamine and glutamine over nitrate. In conclusion, our findings suggest that inorganic and organic N acquisition of the studied temperate tree species is less regulated by mycorrhizal association, but rather by the availability of specific N sources in the soil as well as the competitive environment of different tree species.


2018 ◽  
Vol 15 (9) ◽  
pp. 2891-2907 ◽  
Author(s):  
Kateri R. Salk ◽  
George S. Bullerjahn ◽  
Robert Michael L. McKay ◽  
Justin D. Chaffin ◽  
Nathaniel E. Ostrom

Abstract. Recent global water quality crises point to an urgent need for greater understanding of cyanobacterial harmful algal blooms (cHABs) and their drivers. Nearshore areas of Lake Erie such as Sandusky Bay may become seasonally limited by nitrogen (N) and are characterized by distinct cHAB compositions (i.e., Planktothrix over Microcystis). This study investigated phytoplankton N uptake pathways, determined drivers of N depletion, and characterized the N budget in Sandusky Bay. Nitrate (NO3-) and ammonium (NH4+) uptake, N fixation, and N removal processes were quantified by stable isotopic approaches. Dissimilatory N reduction was a relatively modest N sink, with denitrification, anammox, and N2O production accounting for 84, 14, and 2 % of sediment N removal, respectively. Phytoplankton assimilation was the dominant N uptake mechanism, and NO3- uptake rates were higher than NH4+ uptake rates. Riverine N loading was sometimes insufficient to meet assimilatory and dissimilatory demands, but N fixation alleviated this deficit. N fixation made up 23.7–85.4 % of total phytoplankton N acquisition and indirectly supports Planktothrix blooms. However, N fixation rates were surprisingly uncorrelated with NO3- or NH4+ concentrations. Owing to temporal separation in sources and sinks of N to Lake Erie, Sandusky Bay oscillates between a conduit and a filter of downstream N loading to Lake Erie, delivering extensively recycled forms of N during periods of low export. Drowned river mouths such as Sandusky Bay are mediators of downstream N loading, but climate-change-induced increases in precipitation and N loading will likely intensify N export from these systems.


2002 ◽  
Vol 58 (3) ◽  
pp. 226-233 ◽  
Author(s):  
Paul A. Knapp ◽  
Henri D. Grissino-Mayer ◽  
Peter T. Soulé

AbstractTree-ring records from western juniper (Juniperus occidentalis var. occidentalis Hook.) growing throughout the interior Pacific Northwest identify extreme climatic pointer years (CPYs) (i.e., severe single-year droughts) from 1500–1998. Widespread and extreme CPYs were concentrated in the 16th and early part of the 17th centuries and did not occur again until the early 20th century. The 217-yr absence of extreme CPYs may have occurred during an extended period of low variance in the Pacific Decadal Oscillation. We mapped climatic boundaries for the interior Pacific Northwest based on the location of sites with similar precipitation variability indices. Three regions, the Northwest (based on chronologies from nine sites), the Southwest (four sites), and the East (five sites) were identified. Our results suggest that western juniper radial growth indices have substantial interannual variability within the northwestern range of the species (central Oregon), particularly when compared with western juniper growing in its eastern range (eastern Oregon, southeastern Idaho, and northern Nevada) and southwestern range (southern Oregon and northeast California). We suspect that the substantial differences in the variability of western juniper radial growth indices are linked to the influence of ENSO events on winter/spring precipitation amounts.


2005 ◽  
Vol 2 (5) ◽  
pp. 1331-1352
Author(s):  
S. Kumar ◽  
R. Ramesh ◽  
S. Sardesai ◽  
M. S. Sheshshayee

Abstract. We report here the results of three experiments, which are slight variations of the 15N method (JGOFS protocol) for determination of new production. The first two test the effect of (i) duration of incubation time and (ii) concentration of tracer added on the uptake rates of various N-species (nitrate, ammonium and urea) by marine phytoplankton; while the third compares in situ and deck incubations from dawn to dusk. Results indicate that nitrate uptake can be underestimated by experiments where incubation times shorter than 4h or when more than 10% of the ambient concentration of nitrate is added prior to incubation. The f-ratio increases from 0.28 to 0.42 when the incubation time increases from two to four hours. This may be due to the observed increase in the uptake rate of nitrate and decrease in the urea uptake rate. Unlike ammonium [y{=}2.07x{-}0.002\\, (r2=0.55)] and urea uptakes [y{=}1.88x{+}0.004 (r2=0.88)], the nitrate uptake decreases as the concentration of the substrate (x) increases, showing a negative correlation [y{=}-0.76x+0.05 (r2=0.86)], possibly due to production of glutamine, which might suppress nitrate uptake. This leads to decline in the f-ratio from 0.47 to 0.10, when concentration of tracer varies from 0.01 to 0.04μ M. The column integrated total productions are 519 mg C m-2 d-1 and 251 mg C m-2 d-1 for in situ and deck incubations, respectively. The 14C based production at the same location is ~200 mg C m-2 d-1, which is in closer agreement to the 15N based total production measured by deck incubation.


2014 ◽  
Vol 31 (1) ◽  
pp. 55-65 ◽  
Author(s):  
Aleksandra Pokojska ◽  
Maria Kampert ◽  
Henryk Różycki ◽  
Edmund Strzelczyk

Studies were carried out to determine the effect of vitamins, temperature and pH on the biomass production by ectomycorrhizal fungi: <i>Laccuria bicolor, Hebeloma crustuliniforme, Suillus bovinus</i> and <i>Pisolithus arhizus</i>. Responses of particular organisms were different Three-factor ANOVA which enables the comparison of the effect of experimental factors on biomass yield has shown that the pH of the medium had a stronger effect on <i>L. bicolor, H. crustuliniforme</i> and <i>S. bovinus</i> than vitamins. Temperature was the factor exerting the strongest effect on the growth of <i>P. tinctorius</i>.


2018 ◽  
Author(s):  
Bhavya P. Sadanandan ◽  
Jang Han Lee ◽  
Ho Won Lee ◽  
Jae Joong Kaang ◽  
Jae Hyung Lee ◽  
...  

Abstract. Carbon and nitrogen uptake rates by small phytoplankton (0.7–5 μm) in the Kara, Laptev, and East Siberian seas in the Arctic Ocean were quantified using in situ isotope labelling experiments for the first time as part of the NABOS (Nansen and Amundsen Basins Observational System) program during August 21 to September 22, 2013. The depth integrated C, NO3−, and NH4+ uptake rates by small phytoplankton showed a wide range from 0.54 to 15.96 mg C m−2 h−1, 0.05 to 1.02 and 0.11 to 3.73 mg N m−2 h−1, respectively. The contributions of small phytoplankton towards the total C, NO3−, and NH4+ was varied from 24 to 89 %, 32 to 89 %, and 28 to 89 %, respectively. The turnover times for NO3− and NH4+ by small phytoplankton during the present study point towards the longer residence times (years) of the nutrients in the deeper waters, particularly for NO3−. Relatively, higher C and N uptake rates by small phytoplankton obtained during the present study at locations with less sea ice concentrations points towards the possibility of small phytoplankton thrive under sea ice retreat under warming conditions. The high contributions of small phytoplankton towards the total carbon and nitrogen uptake rates suggest capability of small size autotrophs to withstand in the adverse hydrographic conditions introduced by climate change.


2018 ◽  
Vol 156 (1) ◽  
pp. 46-58 ◽  
Author(s):  
Caixia Liu ◽  
Sabine Ravnskov ◽  
Fulai Liu ◽  
Gitte H. Rubæk ◽  
Mathias N. Andersen

AbstractDeficit irrigation (DI) improves water use efficiency (WUE), but the reduced water input often limits plant growth and nutrient uptake. The current study examined whether arbuscular mycorrhizal fungi (AMF) could alleviate abiotic stress caused by low phosphorus (P) fertilization and DI.A greenhouse experiment was conducted with potato grown with (P1) or without (P0) P fertilization, with AMF (M1+:Rhizophagus irregularisor M2+:Glomus proliferum) or AMF-free control (M−) and subjected to full irrigation (FI), DI or partial root-zone drying (PRD).Inoculation of M1+ and M2+ maintained or improved plant growth and P/nitrogen (N) uptake when subjected to DI/PRD and P0. However, the positive responses to AMF varied with P level and irrigation regime. Functional differences were found in ability of AMF species alleviating plant stress. The largest positive plant biomass response to M1+ and M2+ was found under FI, both at P1 and P0 (25% increase), while plant biomass response to M1+ and M2+ under DI/PRD (14% increase) was significantly smaller. The large growth response to AMF inoculation, particularly under FI, may relate to greater photosynthetic capacity and leaf area, probably caused by stimulation of plant P/N uptake and carbon partitioning toward roots and tubers. However, plant growth response to AMF was not related to the percentage of AMF root colonization. Arbuscular mycorrhizal fungi can maintain and improve P/N uptake, WUE and growth of plants both at high/low P levels and under FI/DI. If this is also the case under field conditions, it should be implemented for sustainable potato production.


Sign in / Sign up

Export Citation Format

Share Document