scholarly journals Recent Advances in Non‐nucleophilic Mg Electrolytes

2021 ◽  
Vol 7 ◽  
Author(s):  
Qijie Wu ◽  
Kewei Shu ◽  
Lili Sun ◽  
Haihua Wang

High-performance electrolyte is still a roadblock for the development of rechargeable magnesium (Mg) batteries. Grignard-type electrolytes were once the only choice in the early stage of rechargeable Mg batteries research. However, due to their nucleophilic nature and high reactivity, Grignard-type electrolytes have inherent safety issues and low oxidation stability, which restrict the development of rechargeable Mg batteries in terms of practical application. Recently, emerging novel Mg battery systems such as Mg-S, Mg-O2/air batteries also require non‐nucleophilic electrolytes with high oxidation stability. This short review summarizes recent advances in non‐nucleophilic Mg electrolytes and aims to provide insights into electrochemical properties and active Mg ion structure of such electrolytes.

2020 ◽  
Vol 24 (1) ◽  
pp. 104-112 ◽  
Author(s):  
Krzysztof Kamil Wojtanowski ◽  
Tomasz Mroczek

Flavonoids are one of the most common secondary metabolites occurring in plants. Their activity in the Central Nervous System (CNS) including sedative, anxiolytic, anti-convulsive, anti-depressant and neuro-protective actions is well known and documented. The most popular methods for detection, identification and structural elucidation of flavonoids are these based on Nuclear Magnetic Resonance (NMR) and mass spectrometry (MS). NMR allows rapid, high throughput analysis of crude extracts and also gives stereochemical details about identified substances. However, these methods are expensive and less sensitive than MS-based techniques. Combining High Performance Liquid Chromatography (HPLC) with MS detection gives the most powerful tool for analysis of flavonoids occurring in plants. There is a lot of different approaches to use LC/MS based techniques for identification of flavonoids and this short review shows the most important.


Author(s):  
Saumendra Kumar Mohapatra ◽  
Mihir Narayan Mohanty

Background: In recent years cardiac problems found proportional to technology development. Cardiac signal (Electrocardiogram) relates to the electrical activity of the heart of a living being and it is an important tool for diagnosis of heart diseases. Method: Accurate analysis of ECG signal can provide support for detection, classification, and diagnosis. Physicians can detect the disease and start the diagnosis at an early stage. Apart from cardiac disease diagnosis ECG can be used for emotion recognition, heart rate detection, and biometric identification. Objective: The objective of this paper is to provide a short review of earlier techniques used for ECG analysis. It can provide support to the researchers in a new direction. The review is based on preprocessing, feature extraction, classification, and different measuring parameters for accuracy proof. Also, different data sources for getting the cardiac signal is presented and various application area of the ECG analysis is presented. It explains the work from 2008 to 2018. Conclusion: Proper analysis of the cardiac signal is essential for better diagnosis. In automated ECG analysis, it is essential to get an accurate result. Numerous techniques were addressed by the researchers for the analysis of ECG. It is important to know different steps related to ECG analysis. A review is done based on different stages of ECG analysis and its applications in society.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Geetika Nehra ◽  
Shannon Andrews ◽  
Joan Rettig ◽  
Michael N. Gould ◽  
Jill D. Haag ◽  
...  

AbstractPerillyl alcohol (POH) has been extensively studied for the treatment of peripheral and primary brain tumors. The intranasal route of administration has been preferred for dosing POH in early-stage clinical trials associated with promising outcomes in primary brain cancer. However, it is unclear how intranasal POH targets brain tumors in these patients. Multiple studies indicate that intranasally applied large molecules may enter the brain and cerebrospinal fluid (CSF) through direct olfactory and trigeminal nerve-associated pathways originating in the nasal mucosa that bypass the blood–brain barrier. It is unknown whether POH, a small molecule subject to extensive nasal metabolism and systemic absorption, may also undergo direct transport to brain or CSF from the nasal mucosa. Here, we compared CSF and plasma concentrations of POH and its metabolite, perillic acid (PA), following intranasal or intravascular POH application. Samples were collected over 70 min and assayed by high-performance liquid chromatography. Intranasal administration resulted in tenfold higher CSF-to-plasma ratios for POH and tenfold higher CSF levels for PA compared to equal dose intravascular administration. Our preclinical results demonstrate POH undergoes direct transport from the nasal mucosa to the CSF, a finding with potential significance for its efficacy as an intranasal chemotherapeutic for brain cancer.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3716
Author(s):  
Francesco Causone ◽  
Rossano Scoccia ◽  
Martina Pelle ◽  
Paola Colombo ◽  
Mario Motta ◽  
...  

Cities and nations worldwide are pledging to energy and carbon neutral objectives that imply a huge contribution from buildings. High-performance targets, either zero energy or zero carbon, are typically difficult to be reached by single buildings, but groups of properly-managed buildings might reach these ambitious goals. For this purpose we need tools and experiences to model, monitor, manage and optimize buildings and their neighborhood-level systems. The paper describes the activities pursued for the deployment of an advanced energy management system for a multi-carrier energy grid of an existing neighborhood in the area of Milan. The activities included: (i) development of a detailed monitoring plan, (ii) deployment of the monitoring plan, (iii) development of a virtual model of the neighborhood and simulation of the energy performance. Comparisons against early-stage energy monitoring data proved promising and the generation system showed high efficiency (EER equal to 5.84), to be further exploited.


2020 ◽  
Vol 92 (5) ◽  
pp. 767-772
Author(s):  
Ye Zhang

AbstractThis short review summarizes our recent progress in fiber-shaped lithium-ion batteries and lithium-air batteries based on carbon nanotube hybrid fiber electrodes. The fiber architecture allows batteries to be deformable in all dimensions and bear various deformations such as bending, tying, twisting and even stretching. They are scaled up and further woven into breathable, flexible, stretchable and shape-memory textiles to effectively meet the requirements of modern electronics such as wearable products.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Yanting Han ◽  
Jinlian Hu ◽  
Gang Sun

Abstract During nature evolution process, living organisms have gradually adapted to the environment and been adept in synthesizing high performance structural materials at mild conditions by using fairly simple building elements. The skin, as the largest organ of animals, is such a representative example. Conferred by its intricate organization where collagen fibers are arranged in a randomly interwoven network, skin collagen (SC), defined as a biomass derived from skin by removing non-collagen components displays remarkable performance with combinations of mechanical properties, chemical-reactivity and biocompatibility, which far surpasses those of synthetic materials. At present, the application of SC in medical field has been largely studied, and there have been many reviews summarizing these efforts. However, the generalized view on the aspects of SC as smart materials in non-medical fields is still lacking, although SC has shown great potential in terms of its intrinsic properties and functionality. Hence, this review will provide a comprehensive summary that integrated the recent advances in SC, including its preparation method, structure, reactivity, and functionality, as well as applications, particularly in the promising area of smart materials. Graphical abstract


Author(s):  
Shunan Zhang ◽  
Zhaoxuan Wu ◽  
Xiufang Liu ◽  
Kaimin Hua ◽  
Zilong Shao ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4425
Author(s):  
Ana María Pineda-Reyes ◽  
María R. Herrera-Rivera ◽  
Hugo Rojas-Chávez ◽  
Heriberto Cruz-Martínez ◽  
Dora I. Medina

Monitoring and detecting carbon monoxide (CO) are critical because this gas is toxic and harmful to the ecosystem. In this respect, designing high-performance gas sensors for CO detection is necessary. Zinc oxide-based materials are promising for use as CO sensors, owing to their good sensing response, electrical performance, cost-effectiveness, long-term stability, low power consumption, ease of manufacturing, chemical stability, and non-toxicity. Nevertheless, further progress in gas sensing requires improving the selectivity and sensitivity, and lowering the operating temperature. Recently, different strategies have been implemented to improve the sensitivity and selectivity of ZnO to CO, highlighting the doping of ZnO. Many studies concluded that doped ZnO demonstrates better sensing properties than those of undoped ZnO in detecting CO. Therefore, in this review, we analyze and discuss, in detail, the recent advances in doped ZnO for CO sensing applications. First, experimental studies on ZnO doped with transition metals, boron group elements, and alkaline earth metals as CO sensors are comprehensively reviewed. We then focused on analyzing theoretical and combined experimental–theoretical studies. Finally, we present the conclusions and some perspectives for future investigations in the context of advancements in CO sensing using doped ZnO, which include room-temperature gas sensing.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Mehdi Srifi ◽  
Ahmed Oussous ◽  
Ayoub Ait Lahcen ◽  
Salma Mouline

AbstractVarious recommender systems (RSs) have been developed over recent years, and many of them have concentrated on English content. Thus, the majority of RSs from the literature were compared on English content. However, the research investigations about RSs when using contents in other languages such as Arabic are minimal. The researchers still neglect the field of Arabic RSs. Therefore, we aim through this study to fill this research gap by leveraging the benefit of recent advances in the English RSs field. Our main goal is to investigate recent RSs in an Arabic context. For that, we firstly selected five state-of-the-art RSs devoted originally to English content, and then we empirically evaluated their performance on Arabic content. As a result of this work, we first build four publicly available large-scale Arabic datasets for recommendation purposes. Second, various text preprocessing techniques have been provided for preparing the constructed datasets. Third, our investigation derived well-argued conclusions about the usage of modern RSs in the Arabic context. The experimental results proved that these systems ensure high performance when applied to Arabic content.


Sign in / Sign up

Export Citation Format

Share Document