Accounting for multiple pathways in the connections among climate variability, ocean processes, and coho salmon recruitment in the Northern California Current

2015 ◽  
Vol 72 (10) ◽  
pp. 1552-1564 ◽  
Author(s):  
Michael J. Malick ◽  
Sean P. Cox ◽  
Randall M. Peterman ◽  
Thomas C. Wainwright ◽  
William T. Peterson

Pathways linking climate to population dynamics of higher-trophic-level fish species such as Pacific salmon often involve a hierarchy in which regional-scale physical and biological processes mediate the effects of large-scale climate variability. We used probabilistic networks to investigate 17 potential ecological pathways linking climate to Oregon coho salmon (Oncorhynchus kisutch) recruitment. We found that pathways originating with the Pacific Decadal Oscillation were the most influential on recruitment, with the net effect being two to four times greater than for pathways originating with the North Pacific Gyre Oscillation or the Oceanic Niño Index. Among all environmental variables, sea surface temperature and an index of juvenile salmon prey biomass had the greatest effects on recruitment, with a 76% chance of recruitment being equal to or below average given that ocean temperatures were above average and a 34% chance of recruitment being below average given that prey biomass was above average. Our results provide evidence that shifts in climate patterns could strongly influence recruitment simultaneously through multiple ecological pathways and highlight the importance of quantifying cumulative effects of these pathways on higher-trophic-level species.

2017 ◽  
Vol 130 (4) ◽  
pp. 336 ◽  
Author(s):  
Eric A Parkinson ◽  
Chris J Perrin ◽  
Daniel Ramos-Espinoza ◽  
Eric B Taylor

The Coho Salmon, Oncorhynchus kisutch, is one of seven species of Pacific salmon and trout native to northeastern Pacific Ocean watersheds. The species is typically anadromous; adults reproduce in fresh water where juveniles reside for 1–2 years before seaward migration after which the majority of growth occurs in the ocean before maturation at 2–4 years old when adults return to fresh water to spawn. Here, we report maturation of Coho Salmon in two freshwater lakes on the north coast of British Columbia apparently without their being to sea. A total of 15 mature fish (11 males and four females) were collected in two lakes across two years. The mature fish were all at least 29 cm in total length and ranged in age from three to five years old. The occurrence of Coho Salmon that have matured in fresh water without first going to sea is exceedingly rare in their natural range, especially for females. Such mature Coho Salmon may represent residual and distinct breeding populations from those in adjacent streams. Alternatively, they may result from the ephemeral restriction in the opportunity to migrate seaward owing to low water levels in the spring when Coho Salmon typically migrate to sea after 1–2 years in fresh water. Regardless of their origin, the ability to mature in fresh water without seaward migration may represent important adaptive life history plasticity in response to variable environments.


2011 ◽  
Vol 68 (6) ◽  
pp. 1122-1130 ◽  
Author(s):  
James R. Irvine ◽  
Masa-aki Fukuwaka

Abstract Irvine, J. R., and Fukuwaka, M. 2011. Pacific salmon abundance trends and climate change. – ICES Journal of Marine Science, 68: 1122–1130. Understanding reasons for historical patterns in salmon abundance could help anticipate future climate-related changes. Recent salmon abundance in the northern North Pacific Ocean, as indexed by commercial catches, has been among the highest on record, with no indication of decline; the 2009 catch was the highest to date. Although the North Pacific Ocean continues to produce large quantities of Pacific salmon, temporal abundance patterns vary among species and areas. Currently, pink and chum salmon are very abundant overall and Chinook and coho salmon are less abundant than they were previously, whereas sockeye salmon abundance varies among areas. Analyses confirm climate-related shifts in abundance, associated with reported ecosystem regime shifts in approximately 1947, 1977, and 1989. We found little evidence to support a major shift after 1989. From 1990, generally favourable climate-related marine conditions in the western North Pacific Ocean, as well as expanding hatchery operations and improving hatchery technologies, are increasing abundances of chum and pink salmon. In the eastern North Pacific Ocean, climate-related changes are apparently playing a role in increasing chum and pink salmon abundances and declining numbers of coho and Chinook salmon.


<em>Abstract</em>.-Pacific salmon <em>Oncorhynchus </em>spp. catches are at historic high levels. It is significant that one of the world's major fisheries for a group of species that dominates the surface waters of the subarctic Pacific is actually very healthy. Natural trends in climate are now recognized to cause large fluctuations in Pacific salmon production, as shown in historical records of catch and recent changes probably have been affected by greenhouse gas induced climate changes. Pink salmon <em>O. gorbuscha </em>and chum salmon <em>O. keta </em>production and catch has increased in the past 30 years and may continue in a similar trend for for the next few decades. Coho salmon <em>O. kisutch </em>and Chinook salmon <em>O. tshawytscha </em>catches have been declining for several decades, particularly at the southern end of their range, and they may continue to decline. In the 1970s, hatcheries were considered to be a method of adding to the wild production of coho and Chinook salmon because the ocean capacity to produce these species was assumed to be underutilized. Large-scale changes in Pacific salmon abundances are linked to changes in large-scale atmospheric processes. These large-scale atmospheric processes are also linked to planetary energy transfers, and there is a decadal scale pattern to these relationships. Pacific salmon production in general is higher in decades of intense Aleutian lows than in periods of weak Aleutian lows. Key to understanding the impact of climate change on Pacific salmon is understanding how the Aleutian low will change. Chinook and coho salmon are minor species in the total commercial catch, but important socially and economically in North America. A wise use of hatcheries may be needed to maintain abundances of these species in future decades.


2019 ◽  
Vol 116 (52) ◽  
pp. 26444-26449
Author(s):  
Kimberly L. Oremus

Climate change is already affecting fish productivity and distributions worldwide, yet its impact on fishing labor has not been examined. Here I directly link large-scale climate variability with fishery employment by studying the effects of sea-surface pressure changes in the North Atlantic region, whose waters are among the world’s fastest warming. I find that climate shocks reduce not only regional catch and revenue in the New England fishing sector, but also ultimately county-level wages and employment among commercial harvesters. Each SD increase from the climatic mean decreases county-level fishing employment by 13%, on average. The South Atlantic region serves as a control due to its different ecological response to climate. Overall, I estimate that climate variability from 1996 to 2017 is responsible for a 16% (95% CI: 10% to 22%) decline in county-level fishing employment in New England, beyond the changes in employment attributable to management or other factors. This quantitative evidence linking climate variability and fishing labor has important implications for management in New England, which employs 20% of US commercial harvesters. Because the results are mediated by the local biology and institutions, they cannot be directly extrapolated to other regions. But they show that climate can impact fishing outcomes in ways unaccounted by management and offer a template for study of this relationship in fisheries around the world.


2010 ◽  
Vol 23 (11) ◽  
pp. 2902-2915 ◽  
Author(s):  
Xuebin Zhang ◽  
Jiafeng Wang ◽  
Francis W. Zwiers ◽  
Pavel Ya Groisman

Abstract The generalized extreme value (GEV) distribution is fitted to winter season daily maximum precipitation over North America, with indices representing El Niño–Southern Oscillation (ENSO), the Pacific decadal oscillation (PDO), and the North Atlantic Oscillation (NAO) as predictors. It was found that ENSO and PDO have spatially consistent and statistically significant influences on extreme precipitation, while the influence of NAO is regional and is not field significant. The spatial pattern of extreme precipitation response to large-scale climate variability is similar to that of total precipitation but somewhat weaker in terms of statistical significance. An El Niño condition or high phase of PDO corresponds to a substantially increased likelihood of extreme precipitation over a vast region of southern North America but a decreased likelihood of extreme precipitation in the north, especially in the Great Plains and Canadian prairies and the Great Lakes/Ohio River valley.


2008 ◽  
Vol 21 (15) ◽  
pp. 3872-3889 ◽  
Author(s):  
Jesse Kenyon ◽  
Gabriele C. Hegerl

Abstract The influence of large-scale modes of climate variability on worldwide summer and winter temperature extremes has been analyzed, namely, that of the El Niño–Southern Oscillation, the North Atlantic Oscillation, and Pacific interdecadal climate variability. Monthly indexes for temperature extremes from worldwide land areas are used describe moderate extremes, such as the number of exceedences of the 90th and 10th climatological percentiles, and more extreme events such as the annual, most extreme temperature. This study examines which extremes show a statistically significant (5%) difference between the positive and negative phases of a circulation regime. Results show that temperature extremes are substantially affected by large-scale circulation patterns, and they show distinct regional patterns of response to modes of climate variability. The effects of the El Niño–Southern Oscillation are seen throughout the world but most clearly around the Pacific Rim and throughout all of North America. Likewise, the influence of Pacific interdecadal variability is strongest in the Northern Hemisphere, especially around the Pacific region and North America, but it extends to the Southern Hemisphere. The North Atlantic Oscillation has a strong continent-wide effect for Eurasia, with a clear but weaker effect over North America. Modes of variability influence the shape of the daily temperature distribution beyond a simple shift, often affecting cold and warm extremes and sometimes daytime and nighttime temperatures differently. Therefore, for reliable attribution of changes in extremes as well as prediction of future changes, changes in modes of variability need to be accounted for.


2020 ◽  
Vol 77 (6) ◽  
pp. 943-949 ◽  
Author(s):  
Brendan Connors ◽  
Michael J. Malick ◽  
Gregory T. Ruggerone ◽  
Pete Rand ◽  
Milo Adkison ◽  
...  

Pacific salmon productivity is influenced by ocean conditions and interspecific interactions, yet their combined effects are poorly understood. Using data from 47 North American sockeye salmon (Oncorhynchus nerka) populations, we present evidence that the magnitude and direction of climate and competition effects vary over large spatial scales. In the south, a warm ocean and abundant salmon competitors combined to strongly reduce sockeye productivity, whereas in the north, a warm ocean substantially increased productivity and offset the negative effects of competition at sea. From 2005 to 2015, the approximately 82 million adult pink salmon (Oncorhynchus gorbuscha) produced annually from hatcheries were estimated to have reduced the productivity of southern sockeye salmon by ∼15%, on average. In contrast, for sockeye at the northwestern end of their range, the same level of hatchery production was predicted to have reduced the positive effects of a warming ocean by ∼50% (from a ∼10% to a ∼5% increase in productivity, on average). These findings reveal spatially dependent effects of climate and competition on sockeye productivity and highlight the need for international discussions about large-scale hatchery production.


2007 ◽  
Vol 20 (9) ◽  
pp. 1628-1648 ◽  
Author(s):  
Richard H. Johnson ◽  
Paul E. Ciesielski ◽  
Brian D. McNoldy ◽  
Peter J. Rogers ◽  
Richard K. Taft

Abstract The 2004 North American Monsoon Experiment (NAME) provided an unprecedented observing network for studying the structure and evolution of the North American monsoon. This paper focuses on multiscale characteristics of the flow during NAME from the large scale to the mesoscale using atmospheric sounding data from the enhanced observing network. The onset of the 2004 summer monsoon over the NAME region accompanied the typical northward shift of the upper-level anticyclone or monsoon high over northern Mexico into the southwestern United States, but in 2004 this shift occurred slightly later than normal and the monsoon high did not extend as far north as usual. Consequently, precipitation over the southwestern United States was slightly below normal, although increased troughiness over the Great Plains contributed to increased rainfall over eastern New Mexico and western Texas. The first major pulse of moisture into the Southwest occurred around 13 July in association with a strong Gulf of California surge. This surge was linked to the westward passages of Tropical Storm Blas to the south and an upper-level inverted trough over northern Texas. The development of Blas appeared to be favored as an easterly wave moved into the eastern Pacific during the active phase of a Madden–Julian oscillation. On the regional scale, sounding data reveal a prominent sea breeze along the east shore of the Gulf of California, with a deep return flow as a consequence of the elevated Sierra Madre Occidental (SMO) immediately to the east. Subsidence produced a dry layer over the gulf, whereas a deep moist layer existed over the west slopes of the SMO. A prominent nocturnal low-level jet was present on most days over the northern gulf. The diurnal cycle of heating and moistening (Q1 and Q2) over the SMO was characterized by deep convective profiles in the mid- to upper troposphere at 1800 LT, followed by stratiform-like profiles at midnight, consistent with the observed diurnal evolution of precipitation over this coastal mountainous region. The analyses in the core NAME domain are based on a gridded dataset derived from atmospheric soundings only and, therefore, should prove useful in validating reanalyses and regional models.


2020 ◽  
Author(s):  
Tina Georg ◽  
Maria C. Neves ◽  
Paulo Relvas ◽  
Kate Malmgren

&lt;p&gt;&lt;span&gt;Sea surface temperature differences between coastal and offshore waters and Ekman transport inferred from the wind velocity have been used to construct upwelling indices. Those indices have been widely used in climatological studies. In the present research we look to the upper layer structure of the ocean, down to 500 m depth, to infer relations between climate and the upwelling regimes. In particular, we explore the links between climate variability and the three-dimensional spatial structure of the upwelling activity along the Canary Current Upwelling System (CCUS) sector limited to 25-35&amp;#176; N, where upwelling is permanent, but intensified during the summer. The vertical structure of the CCUS is studied using vertical profiles of temperature, salinity, density and spiciness from the World Ocean Atlas (WOA). Monthly grids are retrieved for the past 30 years and vertical profiles exported at selected locations. The aim is to identify inter-annual and seasonal changes in the thermocline and the mix layer depth and link them to the upwelling characteristics. We then relate periods of strong upwelling with large-scale modes of climate variability, namely the North Atlantic Oscillation (NAO) and Eastern Atlantic pattern (EA). Time series of winter composites of NAO and EA are separated into positive and negative phases and their signatures quantified through composites of SST, salinity and density. The results provide the first assessment of inter-annual variability of the Canary upwelling current at both the surface and throughout depth and contributes towards understanding the connection between the vertical ocean structure and the large-scale climate modes. &lt;/span&gt;&lt;span&gt;The authors would like to acknowledge the financial support FCT through project UIDB/50019/2020 &amp;#8211; IDL.&lt;/span&gt;&lt;/p&gt;


2016 ◽  
Vol 13 (5) ◽  
pp. 1597-1607 ◽  
Author(s):  
Wolfgang Buermann ◽  
Claudie Beaulieu ◽  
Bikash Parida ◽  
David Medvigy ◽  
George J. Collatz ◽  
...  

Abstract. The world's ocean and land ecosystems act as sinks for anthropogenic CO2, and over the last half century their combined sink strength grew steadily with increasing CO2 emissions. Recent analyses of the global carbon budget, however, have uncovered an abrupt, substantial ( ∼  1 PgC yr−1) and sustained increase in the land sink in the late 1980s whose origin remains unclear. In the absence of this prominent shift in the land sink, increases in atmospheric CO2 concentrations since the late 1980s would have been  ∼  30 % larger than observed (or  ∼  12 ppm above current levels). Global data analyses are limited in regards to attributing causes to changes in the land sink because different regions are likely responding to different drivers. Here, we address this challenge by using terrestrial biosphere models constrained by observations to determine if there is independent evidence for the abrupt strengthening of the land sink. We find that net primary production significantly increased in the late 1980s (more so than heterotrophic respiration), consistent with the inferred increase in the global land sink, and that large-scale climate anomalies are responsible for this shift. We identify two key regions in which climatic constraints on plant growth have eased: northern Eurasia experienced warming, and northern Africa received increased precipitation. Whether these changes in continental climates are connected is uncertain, but North Atlantic climate variability is important. Our findings suggest that improved understanding of climate variability in the North Atlantic may be essential for more credible projections of the land sink under climate change.


Sign in / Sign up

Export Citation Format

Share Document