Nuclear and cytoplasmic genetic diversity reveals long-term population decline in Abies semenovii, an endemic fir of central Asia

2012 ◽  
Vol 42 (12) ◽  
pp. 2142-2152 ◽  
Author(s):  
Svetlana A. Semerikova ◽  
Martin Lascoux ◽  
Vladimir L. Semerikov

The genus Abies is one of the largest conifer genera and many of the marginal species remain poorly characterized. Abies semenovii B. Fedtsch. is a rare mountain fir species from central Asia, and its species status is still disputed. We used both nuclear (allozymes and AFLP) and chloroplastic (cpSSR) markers to show that A. semenovii deserves to be considered as a species and that its low genetic diversity justifies more a proactive conservation policy. First, A. semenovii was significantly differentiated from the Siberian fir Abies sibirica Ledeb. and we did not detect gene flow between the two species. Second, A. semenovii has a very low nuclear genetic diversity, suggesting a prolonged restricted effective population size. Abies semenovii had low cpSSR diversity too but the identification of seven closely related haplotypes suggests that these mutations accumulated recently during a phase of population expansion. This agrees well with the palynological record and is in contrast with the situation observed in another rare Eurasian fir endemic to Kamchatka, Abies gracilis Kom., which was devoid of variation in cpSSRs but that also had a more substantial nuclear marker diversity than A. semenovii, thereby suggesting a more recent but less severe population bottleneck.

2021 ◽  
Vol 17 (2) ◽  
pp. 105-114
Author(s):  
Anik Budhi Dharmayanthi ◽  
Achmad Muchsinin ◽  
Afriana Pulungan ◽  
Moch Syamsul Arifin Zein

Pelicans (Pelecanus conspicillatus) is one of the wild species that have a widely distribution. This bird has been successfully bred in Ragunan Zoo, Jakarta. The indicator of inbreeding in the captive population is shown by the decrease of nucleotide diversity and number of haplotypes. The result of genetic diversity analysis using D-loop fragment sequences showed low genetic diversity with nucleotide diversity (p) = 0.00064 ± 0.00010 and haplotype diversity (Hd) = 0.532 ± 0.061 in Pelecanus conspicillatus populations in the Ragunan Zoo. However, negative Fu's Fs value (-3,246) indicates population expansion. We found that there were seven haplotypes in bird populations in the captivity: haplotype 1, 2 and 3 consist of 43 individuals (65.15%), five individuals (7.57%), and 14 individuals (21.21%), respectively. For each haplotype 4, 5, 6 and 7 is only represented by one individual of Pelecanus conspicillatus (1.51%). The sex ratio of males to females is 1: 8.86 with four males identified as haplotype 1, and one male on haplotypes 3, 5 and 7, respectively. Genetic diversity data of the population is an important way for designing long-term plans and goals in efforts to maintain genetic diversity of the Pelecanus conspicillatus population in captivity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
G. C. Conroy ◽  
R. W. Lamont ◽  
L. Bridges ◽  
D. Stephens ◽  
A. Wardell-Johnson ◽  
...  

AbstractThe dingo population on world heritage-listed K’gari-Fraser Island (K’gari) is amongst the most well-known in Australia. However, an absence of population genetic data limits capacity for informed conservation management. We used 9 microsatellite loci to compare the levels of genetic diversity and genetic structure of 175 K’gari dingo tissue samples with 264 samples from adjacent mainland regions. Our results demonstrated that the K'gari population has significantly lower genetic diversity than mainland dingoes (AR, HE, PAR; p < 0.05) with a fourfold reduction in effective population size (Ne = 25.7 vs 103.8). There is also strong evidence of genetic differentiation between the island and mainland populations. These results are in accordance with genetic theory for small, isolated, island populations, and most likely the result of low initial diversity and founder effects such as bottlenecks leading to decreased diversity and drift. As the first study to incorporate a large sample set of K’gari dingoes, this provides invaluable baseline data for future research, which should incorporate genetic and demographic monitoring to ensure long-term persistence. Given that human-associated activities will continue to result in dingo mortality, it is critical that genetic factors are considered in conservation management decisions to avoid deleterious consequences for this iconic dingo population.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1793 ◽  
Author(s):  
Andrea C. Aplasca ◽  
John B. Iverson ◽  
Mark E. Welch ◽  
Giuliano Colosimo ◽  
Evon R. Hekkala

The Endangered Allen Cays Rock Iguana (Cyclura cychlura inornata) is endemic to the Allen Cays, a tiny cluster of islands in the Bahamas. Naturally occurring populations exist on only two cays (<4 ha each). However, populations of unknown origin were recently discovered on four additional cays. To investigate patterns of genetic variation among these populations, we analyzed nuclear and mitochondrial markers for 268 individuals. Analysis of three mitochondrial gene regions (2,328 bp) and data for eight nuclear microsatellite loci indicated low genetic diversity overall. Estimates of effective population sizes based on multilocus genotypes were also extremely low. Despite low diversity, significant population structuring and variation in genetic diversity measures were detected among cays. Genetic data confirm the source population for an experimentally translocated population while raising concerns regarding other, unauthorized, translocations. Reduced heterozygosity is consistent with a documented historical population decline due to overharvest. This study provides the first range-wide genetic analysis of this subspecies. We suggest strategies to maximize genetic diversity during ongoing recovery including additional translocations to establish assurance populations and additional protective measures for the two remaining natural populations.


2016 ◽  
Vol 65 (1) ◽  
pp. 59-66 ◽  
Author(s):  
Y. C. Miao ◽  
Z. J. Zhang ◽  
J. R. Su

Abstract Taxus yunnanensis, which is an endangered tree that is considered valuable because it contains the effective natural anticancer metabolite taxol and heteropolysaccharides, has long suffered from severe habitat fragmentation. In this study, the levels of genetic diversity in two populations of 136 individuals were analyzed based on eleven polymorphic microsatellite loci. Our results suggested that these two populations were characterized by low genetic diversity (NE = 2.303/2.557; HO = 0.168/0.142; HE = 0.453/0.517), a population bottleneck, a low effective population size (Ne = 7/9), a high level of inbreeding (FIS = 0.596/0.702), and a weak, but significant spatial genetic structure (Sp = 0.001, b = −0.001*). Habitat fragmentation, seed shadow overlap and limited seed and pollen dispersal and potential selfing may have contributed to the observed gene tic structure. The results of the present study will enable development of practical conservation measures to effectively conserve the valuable genetic resources of this endangered plant.


Animals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 361 ◽  
Author(s):  
Shuqi Diao ◽  
Shuwen Huang ◽  
Zhiting Xu ◽  
Shaopan Ye ◽  
Xiaolong Yuan ◽  
...  

To investigate the genetic diversity, population structure, extent of linkage disequilibrium (LD), effective population size (Ne), and selection signatures in indigenous pigs from Guangdong and Guangxi in China, 226 pigs belonging to ten diverse populations were genotyped using single nucleotide polymorphism (SNP) chips. The genetic divergence between Chinese and Western pigs was determined based on the SNP chip data. Low genetic diversity of Dahuabai (DHB), Luchuan (LC), Lantang (LT), and Meihua (MH) pigs, and introgression of Western pigs into Longlin (LL), MH, and Yuedonghei (YDH) pigs were detected. Analysis of the extent of LD showed that indigenous pigs had low LD when pairwise SNP distance was short and high LD when pairwise SNP distance was long. Effective population size analysis showed a rapid decrease for Chinese indigenous pigs, and some pig populations had a relatively small Ne. This result indicated the loss of genetic diversity in indigenous pigs, and introgression from Western commercial pigs. Selection signatures detected in this study overlapped with meat quality traits, such as drip loss, intramuscular fat content, meat color b*, and average backfat thickness. Our study deepened understanding of the conservation status and domestication of Chinese indigenous pigs.


2015 ◽  
Vol 63 (4) ◽  
pp. 279 ◽  
Author(s):  
Josef Krawiec ◽  
Siegfried L. Krauss ◽  
Robert A. Davis ◽  
Peter B. S. Spencer

Populations in fragmented urban remnants may be at risk of genetic erosion as a result of reduced gene flow and elevated levels of inbreeding. This may have serious genetic implications for the long-term viability of remnant populations, in addition to the more immediate pressures caused by urbanisation. The population genetic structure of the generalist skink Ctenotus fallens was examined using nine microsatellite markers within and among natural vegetation remnants within a highly fragmented urban matrix in the Perth metropolitan area in Western Australia. These data were compared with samples from a large unfragmented site on the edge of the urban area. Overall, estimates of genetic diversity and inbreeding within all populations were similar and low. Weak genetic differentiation, and a significant association between geographic and genetic distance, suggests historically strong genetic connectivity that decreases with geographic distance. Due to recent fragmentation, and genetic inertia associated with low genetic diversity and large population sizes, it is not possible from these data to infer current genetic connectivity levels. However, the historically high levels of gene flow that our data suggest indicate that a reduction in contemporary connectivity due to fragmentation in C. fallens is likely to result in negative genetic consequences in the longer term.


Parasitology ◽  
2020 ◽  
Vol 147 (13) ◽  
pp. 1532-1537 ◽  
Author(s):  
Juan C. Garcia-R ◽  
Murray P. Cox ◽  
David T. S. Hayman

AbstractParasites sometimes expand their host range and cause new disease aetiologies. Genetic changes can then occur due to host-specific adaptive alterations, particularly when parasites cross between evolutionarily distant hosts. Characterizing genetic variation in Cryptosporidium from humans and other animals may have important implications for understanding disease dynamics and transmission. We analyse sequences from four loci (gp60, HSP-70, COWP and actin) representing multiple Cryptosporidium species reported in humans. We predicted low genetic diversity in species that present unusual human infections due to founder events and bottlenecks. High genetic diversity was observed in isolates from humans of Cryptosporidium meleagridis, Cryptosporidium cuniculus, Cryptosporidium hominis and Cryptosporidium parvum. A deviation of expected values of neutrality using Tajima's D was observed in C. cuniculus and C. meleagridis. The high genetic diversity in C. meleagridis and C. cuniculus did not match our expectations but deviations from neutrality indicate a recent decrease in genetic variability through a population bottleneck after an expansion event. Cryptosporidium hominis was also found with a significant Tajima's D positive value likely caused by recent population expansion of unusual genotypes in humans. These insights indicate that changes in genetic diversity can help us to understand host-parasite adaptation and evolution.


Author(s):  
JEFF A. JOHNSON ◽  
RUTH E. TINGAY ◽  
MELANIE CULVER ◽  
FRANK HAILER ◽  
MICHÈLE L. CLARKE ◽  
...  

2010 ◽  
Vol 11 (6) ◽  
pp. 2267-2279 ◽  
Author(s):  
Brook L. Fluker ◽  
Bernard R. Kuhajda ◽  
Nicholas J. Lang ◽  
Phillip M. Harris

2019 ◽  
Author(s):  
M. Elise Lauterbur

AbstractPopulation genetics employs two major models for conceptualizing genetic relationships among individuals – outcome-driven (coalescent) and process-driven (forward). These models are complementary, but the basic Kingman coalescent and its extensions make fundamental assumptions to allow analytical approximations: a constant effective population size much larger than the sample size. These make the probability of multiple coalescent events per generation negligible. Although these assumptions are often violated in species of conservation concern, conservation genetics often uses coalescent models of effective population sizes and trajectories in endangered species. Despite this, the effect of very small effective population sizes, and their interaction with bottlenecks and sample sizes, on such analyses of genetic diversity remains unexplored. Here, I use simulations to analyze the influence of small effective population size, population decline, and their relationship with sample size, on coalescent-based estimates of genetic diversity. Compared to forward process-based estimates, coalescent models significantly overestimate genetic diversity in oversampled populations with very small effective sizes. When sampled soon after a decline, coalescent models overestimate genetic diversity in small populations regardless of sample size. Such overestimates artificially inflate estimates of both bottleneck and population split times. For conservation applications with small effective population sizes, forward simulations that do not make population size assumptions are computationally tractable and should be considered instead of coalescent-based models. These findings underscore the importance of the theoretical basis of analytical techniques as applied to conservation questions.


Sign in / Sign up

Export Citation Format

Share Document