Comparison of the fecal microbiota composition between the blue Sheep (Pseudois nayaur) fed with Lolium perenne and Sorghum sudanense

Author(s):  
Haili Wu ◽  
Yaohua Yuan ◽  
Hongjie Pan

Lolium perenne L. and Sorghum sudanense (Piper) Stapf. are two common forages fed to the captive blue sheep. However, the effect of these two forages on the gastrointestinal microbiota is largely unknown. We analyzed the microbiota diversity in feces of the captive blue sheep fed with L. perenne (F1) and S. sudanense (F2) by 16S rRNA sequencing. A total number of 20 major phyla and 29 genera fecal bacterial communities were detected in the two groups. The F1 and F2 groups shared common microbiota at the phylum level, which mainly consisted of Firmicutes and Bacteroidetes. Ruminococcaceae_UCG-005, Eubacterium_coprostanoligenes_group, Ruminococcaceae_UCG-013 and Ruminococcaceae_UCG-010 were top four dominant taxa at the genus level. The percentage of Ruminococcaceae_UCG-010 in F2 was significantly higher than that in F1 (~2.75 fold). The diversity and abundance of the microbial community in F2 were higher than that in F1. Although both of the L. perenne and S. sudanense effect the blue sheep gastrointestinal microbiota metabolism, the S. sudanense improves more aspects in metabolism and biogenesis. In summary, our results demonstrated that the L. perenne and S. sudanense effect the blue sheep gastrointestinal microbiota in different ways. But S. sudanense efficiently improved the blue sheep gastrointestinal microbiota.

Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 615
Author(s):  
Laura Montoro-Dasi ◽  
Arantxa Villagra ◽  
María de Toro ◽  
María Teresa Pérez-Gracia ◽  
Santiago Vega ◽  
...  

Poultry is one of the main agricultural sub-sectors worldwide. However, public concern regarding animal welfare and antimicrobial resistance has risen in recent years. Due to the influence of management practices on microbiota, it might be considered to evaluate poultry welfare and health. Therefore, the objective of this research was to analyse the influence on microbiota balance of broilers under commercial and optimal farm conditions, using 16S rRNA sequencing analysis. The research was performed in two identical poultry houses (commercial vs. optimal). Results showed a higher level of microbiota complexity in the group reared under optimal farm conditions at the end of rearing. Regarding microbiota composition, Firmicutes was the dominant phylum during the entire growing period. However, the second most prevalent phylum was Proteobacteria at the arrival day, and Bacteroidetes from the mid-period onward in both groups. Moreover, the most predominant genera identified were Oscillospira, Ruminococcus, Bacteroides, and Coprococcus. In conclusion, it is necessary to optimize farm management as much as possible. Using gut microbiota diversity and composition as biomarkers of animal health could be an important tool for infectious disease control, with the aim of reducing the administration of antibiotics at field level.


2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S599-S599
Author(s):  
Christopher J Lehmann ◽  
Robert Keskey ◽  
Matthew Odenwald ◽  
Ravi Nayak ◽  
Maryam Khalid ◽  
...  

Abstract Background Liver transplant (LT) recipients have abnormal microbiota before and after transplantation. (1,2) Associations between fecal microbiota, microbial metabolites, and clinical outcomes in liver transplantation are not well established. We correlated fecal microbiota composition and metabolite concentrations with early LT outcomes, including infection. Methods In a prospective observational study, we collected peri-transplant fecal samples and determined microbiota composition by 16S ribosomal RNA gene sequencing in LT recipients. Fecal short chain fatty acid (SCFA) and bile acid concentrations were measured by targeted GC- and LC-MS analyses, respectively. Inverse Simpson index was used to determine microbiota alpha-diversity in subjects and healthy controls. Clinical outcomes including length of stay, ICU admission, liver function, antibiotic use, immunosuppressive requirement and post-operative infection were correlated with microbiota composition. Results 69 patients were enrolled, 70 liver transplants were performed and 307 peri-transplant fecal samples were collected and analyzed. Compared to healthy controls, the fecal microbiota of LT recipients had reduced alpha-diversity (p< 0.001). [Fig1] Bacteroidetes, Ruminococcaceae, and Lachnospiraceae, three taxa associated with a health-promoting microbiota, and their metabolites, SCFA and secondary bile acids, were markedly diminished 55% of LT patients.(3) Intestinal domination ( >30% frequency) by Enterococcus or Proteobacteria species was common and occurred in 36% of LT recipients. 76 post-operative infections occurred in 40 LT recipients, with Enterococci causing 52% and Proteobacteria 41% of bacterial infections. In subjects with fecal samples collected within 5 days of infection, 9/17 infections were caused by the organism dominating the microbiota. [Fig2] Microbiota Composition and Metabolite Production 16s gene sequencing color coded by taxonomy. Each bar represents one stool sample nearest to LT compared to healthy controls. Alpha diversity measured by inverse simpson index. Absolute values of microbial metabolites and ratio of primary to secondary bile acids. Comparison of Microbiota Composition and Post Operative Infection All bacterial infections captured with a microbiota sample within 5 days of infection. Conclusion Microbiota diversity and microbially derived metabolites are markedly reduced in >50% of LT recipients. Intestinal domination and post-operative infections caused by antibiotic-resistant Enterococcus and Proteobacteria correlate with loss of Bacteroidetes, Ruminococcaceae, and Lachnospiraceae species, suggesting a potential role for microbiota reconstitution therapy in LT patients. Disclosures Eric G. Pamer, MD;FIDSA, Nothing to disclose


2020 ◽  
Vol 96 (10) ◽  
Author(s):  
Julian Bär ◽  
Jacqueline M Leung ◽  
Christina Hansen ◽  
P'ng Loke ◽  
Alex R Hall ◽  
...  

ABSTRACT Studies of controlled lab animals and natural populations represent two insightful extremes of microbiota research. We bridged these two approaches by transferring lab-bred female C57BL/6 mice from a conventional mouse facility to an acclimation room and then to an outdoor enclosure, to investigate how the gut microbiota changes with environment. Mice residing under constant conditions served as controls. Using 16S rRNA sequencing of fecal samples, we found that the shift in temperature and humidity, as well as exposure to a natural environment, increased microbiota diversity and altered community composition. Community composition in mice exposed to high temperatures and humidity diverged as much from the microbiota of mice housed outdoors as from the microbiota of control mice. Additionally, infection with the nematode Trichuris muris modulated how the microbiota responded to environmental transitions: The dynamics of several families were buffered by the nematodes, while invasion rates of two taxa acquired outdoors were magnified. These findings suggest that gut bacterial communities respond dynamically and simultaneously to changes within the host's body (e.g. the presence of nematodes) and to changes in the wider environment of the host.


Microbiome ◽  
2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Wence Wang ◽  
Shuangshuang Zhai ◽  
Yaoyao Xia ◽  
Hao Wang ◽  
Dong Ruan ◽  
...  

Abstract Background Ochratoxin A (OTA) is a widespread mycotoxin and induces liver inflammation to human and various species of animals. The intestinal microbiota has critical importance in liver inflammation; however, it remains to know whether intestinal microbiota mediates the liver inflammation induced by OTA. Here, we treated ducklings with oral gavage of OTA (235 μg/kg body weight) for 2 weeks. Then, the microbiota in the cecum and liver were analyzed with 16S rRNA sequencing, and the inflammation in the liver was analyzed. To explore the role of intestinal microbiota in OTA-induced liver inflammation, intestinal microbiota was cleared with antibiotics and fecal microbiota transplantation was conducted. Results Here, we find that OTA treatment in ducks altered the intestinal microbiota composition and structure [e.g., increasing the relative abundance of lipopolysaccharides (LPS)-producing Bacteroides], and induced the accumulation of LPS and inflammation in the liver. Intriguingly, in antibiotic-treated ducks, OTA failed to induce these alterations in the liver. Notably, with the fecal microbiota transplantation (FMT) program, in which ducks were colonized with intestinal microbiota from control or OTA-treated ducks, we elucidated the involvement of intestinal microbiota, especially Bacteroides, in liver inflammation induced by OTA. Conclusions These results highlight the role of gut microbiota in OTA-induced liver inflammation and open a new window for novel preventative or therapeutic intervention for mycotoxicosis.


2019 ◽  
Vol 7 (12) ◽  
pp. 622 ◽  
Author(s):  
Mathilde Le Sciellour ◽  
David Renaudeau ◽  
Olivier Zemb

The present study aimed at investigating the evolution of pigs’ fecal microbiota composition from post-weaning to finishing in a longitudinal analysis. The experiment was conducted on 160 Pietrain × (Large White × Landrace) castrated male and female pigs in two replicates. Feces were collected at 52, 99, 119, 140, and 154 days of age for further 16S rRNA sequencing to analyze the microbiota composition. Pig microbiota evolved strongly from 52 to 99 days of age with an increased abundance of Streptococcaceae and a decreased abundance of Lactobacillaceae. During the finishing stage, microbiota kept evolving at a slower rate. To link the community structure to the performances, the fecal samples were clustered into enterotypes sharing a similar bacterial composition. At 52 days, two enterotypes dominated either by Lactobacillus or by Prevotella–Sarcina were identified. They differed from the two enterotypes determined from 99 to 154 days which were dominated either by Lactobacillus or by Turicibacter–Clostridium sensu stricto. During this time period, 75% of the pigs switched enterotypes. The enterotypes were not related to differences in the overall growth or feeding performance. The enterotype definition was time-dependent and seemed to be related to the sex type at 99 days of age.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1938
Author(s):  
Han Aricha ◽  
Huasai Simujide ◽  
Chunjie Wang ◽  
Jian Zhang ◽  
Wenting Lv ◽  
...  

Mongolian cattle from China have strong adaptability and disease resistance. We aimed to compare the gut microbiota community structure and diversity in grazing Mongolian cattle from different regions in Inner Mongolia and to elucidate the influence of geographical factors on the intestinal microbial community structure. We used high throughput 16S rRNA sequencing to analyze the fecal microbial community and diversity in samples from 60 grazing Mongolian cattle from Hulunbuir Grassland, Xilingol Grassland, and Alxa Desert. A total of 2,720,545 high-quality reads and sequences that were 1,117,505,301 bp long were obtained. Alpha diversity among the three groups showed that the gut microbial diversity in Mongolian cattle in the grasslands was significantly higher than that in the desert. The dominant phyla were Firmicutes and Bacteroidetes, whereas Verrucomicrobia presented the highest abundance in the gut of cattle in the Alxa Desert. The gut bacterial communities in cattle from the grasslands versus the Alxa Desert were distinctive, and those from the grasslands were closely clustered. Community composition analysis revealed significant differences in species diversity and richness. Overall, the composition of the gut microbiota in Mongolian cattle is affected by geographical factors. Gut microbiota may play important roles in the geographical adaptations of Mongolian cattle.


2021 ◽  
Vol 9 (7) ◽  
pp. 1459
Author(s):  
Mohamed Rhouma ◽  
Charlotte Braley ◽  
William Thériault ◽  
Alexandre Thibodeau ◽  
Sylvain Quessy ◽  
...  

The intestinal microbiota plays several important roles in pig health and growth. The aim of the current study was to characterize the changes in the fecal microbiota diversity and composition of weaned piglets following an oral challenge with an ETEC: F4 strain and/or a treatment with colistin sulfate (CS). Twenty-eight piglets were used in this experiment and were divided into four groups: challenged untreated, challenged treated, unchallenged treated, and unchallenged untreated. Rectal swab samples were collected at five sampling times throughout the study. Total genomic DNA was used to assess the fecal microbiota diversity and composition using the V4 region of the 16S rRNA gene. The relative abundance, the composition, and the community structure of piglet fecal microbiota was highly affected by the ETEC: F4 challenge throughout the experiment, while the oral treatment with CS, a narrow spectrum antibiotic, resulted in a significant decrease of E. coli/Shigella populations during the treatment period only. This study was the first to identify some gut microbiota subgroups (e.g., Streptococcus, Lachnospiraceae) that are associated with healthy piglets as compared to ETEC: F4 challenged animals. These key findings might contribute to the development of alternative strategies to reduce the use of antimicrobials in the control of post-weaning diarrhea in pigs.


Sign in / Sign up

Export Citation Format

Share Document