scholarly journals Electron Bernstein waves in a collisionless magnetoplasma with Cairns distribution function

2018 ◽  
Vol 96 (4) ◽  
pp. 406-410
Author(s):  
M. Usman Malik ◽  
W. Masood ◽  
Aman-ur Rehman ◽  
Arshad M. Mirza ◽  
Anisa Qamar

In this paper, we have investigated the electrostatic electron Bernstein waves in a collisionless magnetized plasma using the Cairns distribution function. In this regard, we have derived a generalized dielectric constant for the Bernstein waves and derived the modified dispersion relation in the presence of Cairns distribution function. We have found that the dispersion curves for the electron Bernstein waves using the Cairns distribution function show a very significant deviation from the Maxwellian results. It has been found that the behavior of the Bernstein waves across the entire band between the adjacent harmonics shows a departure from the Maxwellian result for the different values of the non-thermality parameter for the Cairns distribution function.

2007 ◽  
Vol 73 (2) ◽  
pp. 207-214 ◽  
Author(s):  
R. P. SINGHAL ◽  
A. K. TRIPATHI

Abstract.The components of the dielectric tensor for the distribution function given by Leubner and Schupfer have been obtained. The effect of the loss-cone index appearing in the particle distribution function in a hot magnetized plasma has been studied. A case study has been performed to calculate temporal growth rates of Bernstein waves using the distribution function given by Summers and Thorne and Leubner and Schupfer. The effect of the loss-cone index on growth rates is found to be quite different for the two distribution functions.


1983 ◽  
Vol 29 (1) ◽  
pp. 35-40 ◽  
Author(s):  
Armando L. Brinca ◽  
Kristian B. Dysthe

We study the influence of static parallel electric fields on the characteristics of obliquely propagating electron Bernstein waves. Analysis of the equilibrium state defines the range of validity of the adopted model, viz. a collisionless, locally homogeneous medium described by the Vlasov and Poisson equations. An iterative method yields the modified dispersion relation whose numerical solution, for an idealized medium, suggests the relevance of the effects induced by static parallel electric fields in natural plasmas.


1976 ◽  
Vol 16 (3) ◽  
pp. 399-413 ◽  
Author(s):  
W. All'an

A general dispersion relation is derived for linear waves in a non-uniform, magnetized plasma using the polarized co-ordinate system. An equilibrium distribution function with general gradients in density and temperature (and differing parallel and perpendicular temperatures) is proposed using polarized tensors. A compact conductivity tensor is derived in terms of tensor quantities, including certain tensor moment integrals whose elements may be evaluated separately from a given problem. This is of importance in computational applications. The derivation is under the restrictions (a) small gradients, (b) the local approximation of Krall & Rosenbluth, and (c) β⊥ ≪ 1. Conditions for coupling of electrostatic and electro-magnetic modes are investigated.


1988 ◽  
Vol 40 (3) ◽  
pp. 407-417 ◽  
Author(s):  
Cheng Chu ◽  
J. L. Sperling

Electromagnetic fluctuations, induced by energetic charged particles, are calculated using correlation techniques for a uniform magnetized plasma. Power emission in the ion-cyclotron range of frequencies (ICRF) is calculated for a specific model of velocity distribution function. The emissive spectra are distinct from that of the black-body radiation and have features that are consistent with experimental observation.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Shovon Biswas ◽  
Mir Mehedi Faruk

Planck scale inspired theories which are also often accompanied with maximum energy and/or momentum scale predict deformed dispersion relations compared to ordinary special relativity and quantum mechanics. In this paper, we resort to the methods of statistical mechanics in order to determine the effects of a deformed dispersion relation along with an upper bound in the partition function that maximum energy and/or momentum scale can have on the thermodynamics of photon gas. We also analyzed two distinct quantum gravity models in this paper.


1975 ◽  
Vol 30 (4) ◽  
pp. 537-540
Author(s):  
Wilhelm Nitsch

Abstract The dispersion of polaritons of symmetry A1 and E is investigated in the region of four isotopic vibrations originating from C13- and N15 -atoms in their natural abundances. The measured dispersion curves are explained in terms of a theory for localized mode polaritons (LMP) developed by Ohtaka. The dispersion relation is generalized for a polyatomic crystal and applied to K3Cu(CN)4. The comparison of experimental data with calculated dispersion curves shows a quite satisfying agreement for a certain value of the coupling constant which is approximately the same for E-type and A1-type polaritons.


2020 ◽  
Vol 80 (7) ◽  
Author(s):  
Cláudio Gomes

Abstract The weak field limit of the nonminimally coupled Boltzmann equation is studied, and relations between the invariant Bardeen scalar potentials are derived. The Jean’s criterion for instabilities is found through the modified dispersion relation. Special cases are scrutinised and considerations on the model parameters are discussed for Bok globules.


2020 ◽  
Vol 129 (3) ◽  
pp. 30002
Author(s):  
Arnab Mukherjee ◽  
Sunandan Gangopadhyay ◽  
Manjari Dutta

Sign in / Sign up

Export Citation Format

Share Document